Browse > Article
http://dx.doi.org/10.5695/JKISE.2016.49.2.152

Effects of Plasma Treatment on Contact Resistance and Sheet Resistance of Graphene FET  

Ra, Chang-Ho (SKKU Advanced Institute of Nano-Technology (SAINT), Samsung-SKKU Graphene Center (SSGC), Sungkyunkwan University)
Choi, Min Sup (SKKU Advanced Institute of Nano-Technology (SAINT), Samsung-SKKU Graphene Center (SSGC), Sungkyunkwan University)
Lee, Daeyeong (SKKU Advanced Institute of Nano-Technology (SAINT), Samsung-SKKU Graphene Center (SSGC), Sungkyunkwan University)
Yoo, Won Jong (SKKU Advanced Institute of Nano-Technology (SAINT), Samsung-SKKU Graphene Center (SSGC), Sungkyunkwan University)
Publication Information
Journal of the Korean institute of surface engineering / v.49, no.2, 2016 , pp. 152-158 More about this Journal
Abstract
We investigated the effect of capacitively coupled Ar plasma treatment on contact resistance ($R_c$) and channel sheet resistance ($R_{sh}$) of graphene field effect transistors (FETs), by varying their channel length in the wide range from 200 nm to $50{\mu}m$ which formed the transfer length method (TLM) patterns. When the Ar plasma treatment was performed on the long channel ($10{\sim}50{\mu}m$) graphene FETs for 20 s, $R_c$ decreased from 2.4 to $1.15k{\Omega}{\cdot}{\mu}m$. It is understood that this improvement in $R_c$ is attributed to the formation of $sp^3$ bonds and dangling bonds by the plasma. However, when the channel length of the FETs decreased down to 200 nm, the drain current ($I_d$) decreased upon the plasma treatment because of the significant increase of channel $R_{sh}$ which was attributed to the atomic structural disorder induced by the plasma across the transfer length at the edge of the channel region. This study suggests a practical guideline to reduce $R_c$ using various plasma treatments for the $R_c$ sensitive graphene and other 2D material devices, where $R_c$ is traded off with $R_{sh}$.
Keywords
Graphene; Plasma; Contact resistance; Sheet resistance; Field effect transistor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun., 146 (2008) 351-355.   DOI
2 J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, Two Dimensional Phonon Transport in Supported Graphene, Science, 328 (2010) 213-216.   DOI
3 K. N. Parrish, D. Akinwande, Impact of contact resistance on the transconductance and linearity of graphene transistors, Appl. Phys. Lett., 98 (2011) 183505.   DOI
4 J. A. Robinson, M. LaBella, M. Zhu, M. Hollander, R. Kasarda, Z. Hughes, K. Trumbull, R.Cavalero, D. Snyder, Contacting graphene, Appl. Phys. Lett., 98 (2011) 053103.   DOI
5 W. Liu, J. Wei, X. Sun, H. Yu, A study on graphene-metal contact, Crystals, 3 (2013) 257-274.   DOI
6 A. Hsu, H. Wang, K. K. Kim, J. Kong, T. Palacios, Impact of Graphene Interface Quality on Contact Resistance and RF Device Performance, IEEE Electron Device Lett., 32 (2011) 8, 1008-1010.   DOI
7 W. Li, Y. Liang, D. Yu, L. Peng, K. P. Pernstich, T. Shen, A. R. Hight Walker, G. Cheng, C. A. Hacker, C. A. Richter, Q. Li, D. J. Gundlach, X. Liang, Ultraviolet/ozone treatment to reduce metalgraphene contact resistance, Appl. Phys. Lett., 102 (2013) 1831110.   DOI
8 W. Chen, C. Ren, F. Chi, G.-C. Hung, S.-C. Huang, Y. P. Kim, J. Kravchenko, S. J. Pearton, UV ozone treatment for improving contact resistance on graphene, J. Vac. Sci. Technol. B., 30 (2012) 060604.   DOI
9 Y. D. Lim, D.Y. Lee, T.Z. Shen, C.H. Ra, J.Y. Choi, W. J. Yoo, Si-compatible cleaning process for graphene using low-density inductively coupled plasma, ACS Nano, 6 (2012) 4410-4417.   DOI
10 M. S. Choi, S. H. Lee, W. J. Yoo, Plasma treatments to improve metal contacts in graphene field effect transistor, J. Appl. Phys., 110 (2011) 073305.   DOI
11 S. Gahng, C. H. Ra, Y. J. Cho, J. A. Kim, T. Kim, W. J. Yoo, Reduction of metal contact resistance of graphene devices via CO2 cluster cleaning, Appl. Phys. Lett., 104 (2014) 223110.   DOI
12 C. Gong, S. McDonnell, X. Qin, A. Azcatl, H. Dong, Y. J. Chabal, Kyeongjae Cho, R. M. Wallace, Realistic metal-graphene contact structures, ACS Nano, 8 (2014) 642-649.   DOI
13 D. W. Yue, C. H. Ra, X. C. Liu, D. Y. Lee, W. J. Yoo, Edge contacts of graphene formed by using a controlled plasma treatment, Nanoscale, 7 (2015) 825-831.   DOI
14 F. Xia, V. Perebeinos, Yu-ming Lin, Y. Wu, P. Avouris, The origins and limits of metal-graphene junction resistance, Nat. Nanotech., 6 (2011) 179-184.   DOI
15 K. Nagashio, T. Nishimura, K. Kita, A. Toriumi, Metal/Graphene Contact as a Performance Killer of Ultra-high Mobility Graphene - Analysis of Intrinsic Mobility and Contact Resistance , IEEE International Electron Devices Meeting, (2009) 565-568.
16 K. Nagashio, T. Nishimura, K. Kita, A. Toriumi, Contact resistivity and current flow path at metal/graphene contact, Appl. Phys. Lett., 97 (2010) 143514.   DOI
17 K. Nagashio, A. Toriumi, DOS-limited contact resistance in graphene FETs, Jpn. J. Appl. Phys., 50 (2011) 070108.   DOI
18 F. Ahmed, M. S. Choi, X. Liu, W. J. Yoo, Carrier transport at the metal-MoS 2 interface, Nanoscale, 7 (2015) 9222-9228.   DOI
19 A. D. Franklin, S.-J. Han, A. A. Bol, V. Perebeinos, Double Contacts for Improved Performance of Graphene Transistors, IEEE Electron Device Lett., 33 2012) 17-19.   DOI
20 Y. Matsuda, W.-Q. Deng, W. A. Goddard III, Contact Resistance for "End-Contacted" Metal-Graphene and Metal-Nanotube Interfaces from Quantum Mechanics, J. Phys. Chem C, 114 (2010) 17845-17850.   DOI
21 J. T. Smith, A. D. Franklin, D. B. Farmer, C. D. Dimitrakopoulos, Reducing contact resistance in graphene devices through contact area patterning, ACS Nano, 7 (2013) 3661-3667.   DOI
22 L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, C. R. Dean, One-dimensional electrical contact to a two-dimensional material, Science, 342 (2013) 614-617.   DOI
23 X. Li, W. Cai, L. Colombo, R. S. Ruoff, Evolution of graphene growth on Ni and Cu by carbon isotope labeling, Nano Lett., 9 (2009) 4268-4272.   DOI
24 W. S. Leong, H. Gong, J. T. L. Thong., Lowcontact-resistance graphene devices with nickeletched-graphene contacts, ACS Nano, 8 (2014) 994-1001.   DOI
25 J. Chen, T. Shi, T. Cai, T. Xu, L. Sun, X. Wu, D. Yu, Self healing of defected graphene, Appl. Phys. Lett., 102 (2013) 103107.   DOI
26 X. Lia, W. Caia, J. Ana, S. Kimb, J. Nahb, D. Yanga, R. Pinera, A. Velamakannia, I. Junga, E. Tutucb, S. K. Banerjeeb, L. Colombo, R. S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 324 (2009) 1312-1314.   DOI
27 L. G. Cancado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, A. C. Ferrari, Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies, Nano Lett., 2011, 11, 3190-3196.   DOI
28 A. C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun., 143 (2007) 47-57.   DOI
29 P. Venezuela, M. Lazzeri, F. Mauri, Theory of double-resonant Raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands, Phys. Rev. B, 84 (2011) 035433.   DOI
30 A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K. S., Novoselov and C. Casiraghi, Probing the Nature of Defects in Graphene by Raman Spectroscopy, Nano Lett., 12 (2012) 3925-3930.   DOI
31 S. S. Cohen, Contact Resistance and Methods for Its Determination, Thin Solid Films, 104 (1983) 361-379.   DOI
32 D. K. Schroder, Semiconductor material and device characterization, 3rd ed. Wiley, New York, (2006) 147.
33 W. M. Loh, S. E. Swirhun, T. A. Schreyer, R. M. Swanson, K. C. Saraswat, Modeling and measurement of contact resistances, IEEE Trans. Electron Devices, 34 (1987) 512-524.   DOI