Browse > Article
http://dx.doi.org/10.5695/JKISE.2017.50.6.504

Corrosion Characteristics of Cast Stainless Steel under Plasma Ion Nitriding Process Temperature in Marine Environment  

Chong, Sang-Ok (Division of Maritime, DNV.GL)
Kim, Seong-Jong (Division of Marine Engineering, Mokpo Maritime University)
Publication Information
Journal of the Korean institute of surface engineering / v.50, no.6, 2017 , pp. 504-509 More about this Journal
Abstract
In order to improve corrosion resistance for cast stainless steel in seawater, the characteristics of corrosion resistance after plasma ion nitriding was investigated. Plasma ion nitriding process was conducted in a mixture of nitrogen of 25% and hydrogen of 75% at substrate temperature ranging from 350 to $500^{\circ}C$ for 10 hours using pulsed-DC glow discharge plasma with working pressure of 250 Pa in vacuum condition. Corrosion tests were carried out for as-received and plasma ion nitrided specimens. The corrosion characteristics were investigated by measurement of weight loss and observation of surface morphology. In anodic polarization experiment, relatively less damage depth and weight loss were presented at a nitrided temperature of $400^{\circ}C$, attributing to the formation of S-phase.
Keywords
Corrosion resistance; Cast stainless steel; Seawater; Plasma ion nitriding;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 W. J. Yang, M. Zhang, Y. H. Zhao, M. L. Shen, H. Lei, L. Xu, J. Q. Xiao, J. Gong, B. H. Yu, and C. Sun, Enhancement of mechanical property and corrosion resistance of 316 L stainless steels by low temperature arc plasma nitriding, Surf. Coatings Technol 298 (2016) 64-72.   DOI
2 A. Mendes, C. Scheuer, I. Joanidis, R. Cardoso, M. Mafra, A Klein, and S. Brunatto, Lowtemperature plasma nitriding of sintered PIM 316L austenitic stainless steel, Mater. Res 17 (2014) 100-108.   DOI
3 T. Nakanishi, T. Tsuchiyama, H. Mitsuyasu, Y. Iwamoto, and S. Takaki, Effect of partial solution nitriding on mechanical properties and corrosion resistance in a type 316L austenitic stainless steel plate, Mater. Sci. Eng 460-461 (2007) 186-194.   DOI
4 T. Moskalioviene, A. Galdikas J. P. Riviere, L. Pichon, Modeling of nitrogen penetration in polycrystalline AISI 316L austenitic stainless steel during plasma nitriding, Surf. Coatings Technol 205 (2011) 3301-3306.   DOI
5 M. G Fontana: Corrosion Engineering, 3rd Ed. McGraw-Hill Book Company, New York, (1996)
6 Y. C. Lin and S. C. Chen, Effect of Residual Stress on Thermal Fatigue in a Type 420 Martensitic Stainless Steel Weldment, J. Mater. Processing Technol. 138 (2003) 22-27.   DOI
7 S. O. Chong, I. C. Park, and S. J. Kim, Effects of plasma ion nitriding temperature using DC glow discharge on improvement of corrosion resistance of 304 stainless steel in seawater, J. Kor. Soc. Marine Eng. 41 (2017) 238-244.   DOI
8 S. O. Chong and S. J. Kim, Optimum temperature on corrosion resistance for plasma ion nitrided 316L stainless steel in sea water solution, Jpn. J. Appl. Phys 56 (2017) 01AG04-1-01AG04-6.
9 A. J. Sedriks, Corrosion of Stainless Steels, 2nd. ed., Wiley-Interscience, New York, (1996) 13-100.
10 G. P. Singh, A. Joseph, P. M. Raole, P. K. Barhai, and S. Mukherjee, Phase formation in selected surface-roughened plasma-nitrided 304 austenite stainless steel, Sci. Technol. Adv. mater 9 (2008) 1-5.
11 Y. C. Lin and S. C. Chen, Effect of residual stress on thermal fatigue in a type 420 martensitic stainless steel weldment, J. Mater. Proc. Technol 138 (2003) 22-27.   DOI
12 H. S. Jeong, Y. Y. Lee, and D. S. Bae, The Effect of Alloying Elements on Weldability and Corrosion Resistance of Austenitic Stainless Steels(I), J. Welding and Joining 30 (2012) 57-65.
13 N. Nagata, Environmentally assisted cracking of structural materials for light water reactors, NIMS Research Activities 94 (1994) 1-31.
14 E. C. Bain, R. H. Aborn, and J. J. B. Rutherford, The nature and prevention of intergranular corrosion in austenitic stainless steels, Trans. ASM 21 (1933) 481-509.
15 D. A. Jones: Principles and prevention, John Wiley & Sons, New York, (1996) 334.
16 A. Wahid, D. L. Olson, D. K. Matlock, and C.E. Cross, Corrosion of Weldments, Metals Handbook, Vol 6, 1st. ed., ASM International (1993) 1065- 1069.
17 D. H. Kim, G. H. Van, B. H. Seong, B. H. Cho, J. P. Eom, S. G. Park, and S. G. Lim, Effect of Heat Treatment on the Microstructure and Mechanical Properties of the Gravity Cast Superchargers Housing Using A356 Aluminum Alloy, J. Korea Foundry Soc 5 (2014) 231-240.
18 K. J. Kim, S. G. Lim, H. K. Ju, and S. J. Pak, Effect of Austenitizing Ratio on the Delta Ferrite Volume Fraction and Corrosion Resistance of Shell Mold Cast SSC13 Elbow Fitting, J. Kor. Foundary Soc 35 (2015) 109-113.   DOI
19 E. Menthe and K. T. Rie, Further investigation of the structure and properties of austenitic stainless steel after plasma nitriding, Surf. Coatings Technol 116-119 (1999) 199-204.   DOI
20 R. R. M. De Sousa, F. O. De Araújo, J. A. P. Da Costa, R. S. De Sousa, and J. R. C. Alves, Nitriding using cathodic cage technique of martensitic stainless steel AISI 420 with addition of CH4, Revista Materia 13 (2008) 342-347.   DOI
21 F. A. P. Fernandes, S. C. Heck, R. G. Pereira, C. A. Picon, P. A. P. Nascente, and L. C. Casteletti, Ion nitriding of a superaustenitic stainless steel: Wear and corrosion characterization, Surf. Coatings Technol 204 (2010) 3087-3090.   DOI
22 L. Nosei, S. Farina, M. Avalos, L. Nachez, B. J. Gomez, and J. Feugeas, Corrosion behavior of ion nitrided AISI 316L stainless steel, Thin Solid Films 516 (2008) 1044-1050.   DOI