• Title/Summary/Keyword: Plasma polymerization

Search Result 211, Processing Time 0.033 seconds

Frequency effect of TEOS oxide layer in dual-frequency capacitively coupled CH2F2/C4F8/O2/Ar plasma

  • Lee, J.H.;Kwon, B.S.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.284-284
    • /
    • 2011
  • Recently, the increasing degree of device integration in the fabrication of Si semiconductor devices, etching processes of nano-scale materials and high aspect-ratio (HAR) structures become more important. Due to this reason, etch selectivity control during etching of HAR contact holes and trenches is very important. In this study, The etch selectivity and etch rate of TEOS oxide layer using ACL (amorphous carbon layer) mask are investigated various process parameters in CH2F2/C4F8/O2/Ar plasma during etching TEOS oxide layer using ArF/BARC/SiOx/ACL multilevel resist (MLR) structures. The deformation and etch characteristics of TEOS oxide layer using ACL hard mask was investigated in a dual-frequency superimposed capacitively coupled plasma (DFS-CCP) etcher by different fHF/ fLF combinations by varying the CH2F2/ C4F8 gas flow ratio plasmas. The etch characteristics were measured by on scanning electron microscopy (SEM) And X-ray photoelectron spectroscopy (XPS) analyses and Fourier transform infrared spectroscopy (FT-IR). A process window for very high selective etching of TEOS oxide using ACL mask could be determined by controlling the process parameters and in turn degree of polymerization. Mechanisms for high etch selectivity will discussed in detail.

  • PDF

Superb Mechanical Stability of n-Octadecyltriethoxysilane Monolayer Due to Direct Chemical Bonds between Silane Headgroups and Mica Surface: Part I

  • Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.3 no.2
    • /
    • pp.89-95
    • /
    • 2010
  • It is still controversial where the improved stability of n-octadecyltriethoxysilane self-assembled monolayer (OTE SAM) on plasma-pretreated mica surface exactly originates from. To date, it has been well known that the extensive cross-polymerization between silane head-groups is a crucial factor for the outstanding mechanical strength of the monolayer. However, this study clearly showed that the stability comes not only from the cross-links but also, far more importantly, from the direct chemical bonds between silane headgroups and mica surface. To examine this phenomenon, n-octadecyltrichlorosilane monolayers were self-assembled on both untreated and plasma treated mica surfaces, and their adhesion properties at various physical conditions (relative humidity, high stress, and contact repetition) were investigated and compared through the use of the surface forces apparatus technique. It revealed that, in highly humid conditions (>90%RH), there is a substantial difference of stability between untreated and plasma treated cases and the plasma treated surface is mechanically much more stable. It obviously proves that the extensive chemical bonds indeed exist between silane head-groups and plasma treated mica surface and dramatically improve the mechanical stability of the OTE monolayer-coated mica substrate.

Preparation and Characterization of Thin Films by Plasma Polymerization of Hexamethyldisiloxane

  • Lee, Sang-Hee;Lee, Duck-Chool
    • Electrical & Electronic Materials
    • /
    • v.11 no.10
    • /
    • pp.66-71
    • /
    • 1998
  • Plasma polymerized hexamethyldisiloxane (PPHMDSO) thin films were produced using an electrode capacitively coupled apparatus. Fourier transform infrared spectroscopy analysis indicated that the thin film spectra are composed not only of the corresponding monomer bands but also of several new bands. Auger electron spectroscopy analysis indicated that the permeation depth of aluminum into the films is ca. 30nm when top electrode is deposited by evaporation aluminum. The increase of relative dielectric constant and decrease of dielectric loss tangent with the discharge power is originated from high cross-link of the films.

  • PDF

Study of the Plasma Coating Effect on Wood Powder Composites (플라즈마 표면 코팅된 목분 복합재료의 영향 연구)

  • Ha, Jong-Hak;Kim, Byung-Sun;Hwang, Byung-Sun;Kang, Byong-Yun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.99-102
    • /
    • 2005
  • Plasma surface coating is applied to the wood powder to improve its bonding and dispersion with the polypropylene(PP). Some mechanical test results and visual inspection indicates the good compatibility between the wood powder and the PP, and relatively good interfacial adhesion between wood powder and PP matrix was seen. Also, this method is considered as a non-toxic process as compared to other direct chemical method.

  • PDF

Improvement of ITO etching uniformity in a large area plasma source (대면적 플라즈마 소스에서의 ITO 식각균일도 향상)

  • Kim, C.W.;Jo, S.B.;Kim, B.J.;Park, S.G.;O, B.H.;Lee, J.G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.145-148
    • /
    • 2001
  • A large area plasma source using parallel $2{\times}2$ ICP antennas showed improved etching uniformity by the E-ICP operation. ITO etching process with $CH_4$ gas chemistry is optimized with the DOE (Design of Experiment) based on Taguchi method. Various methane ratios in methane and argon mixture are compared to confirm the effect of polymerization. The analysis shows that the effect of bias power is the largeset. We obtained higher ITO etching rate and better uniformity on $350{\times}300mm$ substrate at the 50Hz magnetization frequency of the E-ICP operation technique,

  • PDF

Effects of plasma treatment on gas permeability and selectivity of 6FDA-p-TeMPD membrane (6FDA-p-TeMPD membrane의 불소화합물 plasma처리에 의한 투과특성의 변화)

  • 김태욱;남세종
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.10a
    • /
    • pp.49-50
    • /
    • 1995
  • 고분자분리막을 이용한 기체 혼합물의 분리방법은 심냉법(cryogenic process), 가압기체흡착법(Pressure adsorption)과 더불어 상업적으로 중요한 기체분리공정으로 부각되고 있다. 특히 고분자막 중 Polyimide 막은 열적, 화학적으로 안정하고 기체에 대한 선택성이 높으며 기계적 성질이 뛰어나 좋은 막소재로 알려져 있다. 그러나 투과도와 선택도사이에 일반적으로 Trade-off 현상이 있어서 투과도와 선택도를 동시에 향상 하려는 연구가 수행중에 있다. 본 연구에서는 높은 산소투과도를 갖는다고 보고된 6FDA-p-TeMPD막에 hexafluoropropene (HEP)으로 Plasma polymerization을 시키거나 CF$_4$, Ar기체가 플라즈마처리하여 투과특성을 개선시키고 이를 비교 고찰하였다.

  • PDF

Improvement of 170 etching uniformity in a large area plasma source (대면적 플라즈마 소스에서의 ITO 식각균일도 향상)

  • 김진우;조수범;김봉주;박세근;오범환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.145-148
    • /
    • 2001
  • A large area plasma source using parallel 2x2 ICP antennas showed improved etching uniformity by the E-ICP operation. ITO etching process with CH$_4$ gas chemistry is optimized with the DOE(Design of Experiment) based on Taguchi method. Various methane ratios in methane and argon mixture are compared to confirm the effect of polymerization. The analysis shows that the effect of bias power is the largeset. We obtained higher ITO etching rate and better uniformity on 350x300mm substrate at the 50Hz magnetization frequency of the E-ICP operation technique.

  • PDF

Effect of HF and Plasma Treated Glass Surface on Vapor Phase-Polymerized Poly(3,4-ethylenedioxythiophene) Thin Film : Part II

  • Lee, Joonwoo;Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.6 no.4
    • /
    • pp.215-219
    • /
    • 2013
  • In this study, in order to investigate how consecutive treatments of glass surface with HF acid and water vapor/Ar plasma affect the quality of 3-aminopropyltriethoxysilane self-assembled monolayer (APS-SAM), poly(3,4-ethylenedioxythiophene) (PEDOT) thin films were vapor phase-polymerized immediately after spin coating of FeCl3 and poly-urethane diol-mixed oxidant solution on the monolayer surfaces prepared at various treatment conditions. For the film characterization, various poweful tools were used, e.g., FE-SEM, an optical microscope, four point probe, and a contact angle analyzer. The characterization revealed that a well prepared APS-SAM on a glass surface treated with water vapor/Ar plasma is very useful for uniform coating of FeCl3 and DUDO mixed oxidant solution, regardless of HF treatment. On the other hand, a bare glass surface without APS-SAM but treated with HF and water vapor/Ar plasma generally led to a very poor oxidant film. As a result, PEDOT films vapor phase-polymerized on APS-SAM surfaces are far superior to those on bare glass surfaces in the quality and electrical characteristics aspects.

Preparation and Photo Conducting Characteristics of Plasma Polymerized Organic Photorecepter (플라즈마 중합법에 의한 유기 감광체 박막의 제조와 광전도 특성)

  • 박구범
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.3
    • /
    • pp.19-25
    • /
    • 1999
  • The photoreceptor films with double layer structure were prepared by the plasma polymerization and the dip-coating method. The blocking layer was coated with A1$_2$O$_3$ on the Al substrate and the charge generation layer was formed by H$_2$ phthalocyanine (H$_2$Pc). Poly 9-Vinylcarbazole was used as a charge transport layer. H$_2$Pc film prepared by the vacuum evaporation had absorption peaks on 613.6[nm] and 694.8[nm], and H$_2$Pc film prepared by the plasma polymerization had a dull peaks between 600 and 700[nm]. The surface potential of PVCz increased with increasing the applied voltage and the thickness of PVCz. The dark decay characteristic, the light decay time and the residual time increased with increasing the thickness of PVCz. The surface charge of PVCz of 15[${\mu}{\textrm}{m}$] thickness was 134[nc/$\textrm{cm}^2$] at the surface potential of -600[V] and the charge generation efficiency of H$_2$Pc was 0.034.

  • PDF

Role of CH2F2 and N-2 Flow Rates on the Etch Characteristics of Dielectric Hard-mask Layer to Extreme Ultra-violet Resist Pattern in CH2F2/N2/Ar Capacitively Coupled Plasmas

  • Kwon, B.S.;Lee, J.H.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.210-210
    • /
    • 2011
  • The effects of CH2F2 and N2 gas flow rates on the etch selectivity of silicon nitride (Si3N4) layers to extreme ultra-violet (EUV) resist and the variation of the line edge roughness (LER) of the EUV resist and Si3N4 pattern were investigated during etching of a Si3N4/EUV resist structure in dual-frequency superimposed CH2F2/N2/Ar capacitive coupled plasmas (DFS-CCP). The flow rates of CH2F2 and N2 gases played a critical role in determining the process window for ultra-high etch selectivity of Si3N4/EUV resist due to disproportionate changes in the degree of polymerization on the Si3N4 and EUV resist surfaces. Increasing the CH2F2 flow rate resulted in a smaller steady state CHxFy thickness on the Si3N4 and, in turn, enhanced the Si3N4 etch rate due to enhanced SiF4 formation, while a CHxFy layer was deposited on the EUV resist surface protecting the resist under certain N2 flow conditions. The LER values of the etched resist tended to increase at higher CH2F2 flow rates compared to the lower CH2F2 flow rates that resulted from the increased degree of polymerization.

  • PDF