• 제목/요약/키워드: Plasma jet

검색결과 190건 처리시간 0.032초

초희박 연소를 실현하기 위한 플라즈마 제트의 개발 (A Development of Plasma Jet to Realize Ultra Lean Burn)

  • 오병진;박정서;김문헌
    • 한국자동차공학회논문집
    • /
    • 제6권1호
    • /
    • pp.213-221
    • /
    • 1998
  • The investigation regarding the ignition system of a plasma jet explored by using a constant volume vessel. The purpose of this study is to elucidate relation between the characteristics of the configuration and jet ejection of plasma jet plug, when the sub energy were supplied at plasma jet ignition system. From the results of a visualization by the schlieren system, the jut ejection for plasma jet ignition are depended on the jet plug configuration and sub energy, but the configuration of plasma jet plug is more influenced than the sub energy on the plasma jet ejection. And the plasma jet ignition strongly influences upon the combustion enhancement than the conventional spark ignition.

  • PDF

PROPAGATION PROCESSES OF NEWLY DEVELOPED PLASMA JET IGNITER

  • Ogawa, Masaya;Sasaki, Hisatoshi;Yosgida, Koji;Shoji, Hideo;Tanaka, Hidenori
    • International Journal of Automotive Technology
    • /
    • 제3권1호
    • /
    • pp.9-16
    • /
    • 2002
  • In plasma jet ignition, combustion enhancement effects occur toward the plasma jet issuing direction. Therefore, when the igniter is attached at the center of a cylindrically shaped combustion chamber, plasma jet should issue toward the round combustion chamber wall. The plasma jet igniter that had an annular circular orifice has been developed. The purpose of this study is to elucidate the relationship between the newly developed plasma Jet igniter configuration and combustion enhancement effects. In this newly developed plasma Jet igniter, flame front wrinkle appears on the flame front and flame propagates rapidly. Plasma Jet influences on the flame propagation far long period when the plasma jet igniter has issuing angle 90 degrees and large cavity volume, because the plasma jet only lasts several ms. However, in the early stage of combustion, flame front area of issuing angle 45 degrees is larger than that of 90 degrees, because the initial flame kernel is formed by the plasma jet.

정적 연소기내의 스월 속도 변화에 따른 플라즈마 제트 점화의 연소특성 (Combustion Characteristicsof Plasma JetIgnition for Different Swirl Velocity in a Constant Volume Vessel)

  • 김문헌;박정서;이주환
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.75-83
    • /
    • 2001
  • This paper presents the evaluation of combustion characteristics of sing-hole plasma jet ignitions in comparison with conventional spark ignition for variable of swirl velocity. Plasma jet plugs are three types according to ejecting directions : center of chamber, positive and negative swirl flow direction. Experiments are carried out for equivalent ratio 1.0 of LPG-air mixture in a constant volume cylindrical vessel. Not only the flame propagation is photographed at intervals, but the pressure variation in the combustion chamber is also recorded throughout the entire combustion process. The results show that the plasma jet ignitions and spark ignition enhance the overall combustion rate by increasing the swirl velocity. The dependence of the combustion rate swirl velocity leade to the conclusion that the placma jet plug, which ejects plasma jet to the cwnter of combustion chamber is the most desirable ignitor than other plugs.

  • PDF

바이오-메디컬 응용을 위한 마이크로 플라즈마 분사 소자 (Microplasma-Jet Device for Bio-medical Application)

  • 김강일;홍용철;김근영;양상식
    • 전기학회논문지
    • /
    • 제58권12호
    • /
    • pp.2474-2479
    • /
    • 2009
  • This paper presents an atmospheric microplasma-jet device for bio~medical application. The microplasma-jet device consists of four components; a thin Ni anode, porous alumina insulator, a stainless steel cathode and an aluminum case. The anode has 8 holes, and hole diameter and depth are $200 {\mu}m$ and $60 {\mu}m$, respectively. The discharge test was performed in atmospheric pressure using nitrogen gas and AC voltage at the optimum gas flow rate of 4 Vmin. The plasma-jet is ejected stably for the input voltage ranging from 5.5 to $9.5 kV_{p-p}$. The plasma becomes dense as the input voltage increases, which was verified by the hydrophilicity change of PMMA surface treated by the plasma. The temperature increasement of the aluminum film exposed to plasma-jet illustrates that the micro plasma-jet device is feasible for bio-medical application.

유량에 따른 대기압 유전체 전위장벽방전(DBD) 플라즈마 젯 발생에 관한 연구 (A Study of Atmospheric-pressure Dielectric Barrier Discharge (DBD) Volume Plasma Jet Generation According to the Flow Rate)

  • 정병호
    • 산업융합연구
    • /
    • 제21권7호
    • /
    • pp.83-92
    • /
    • 2023
  • 유전체 전위장벽방전방식에 의한 플라즈마 젯의 블렛 형상은 인가되는 유량과 전기장의 크기에 따라 달라지고 이러한 변화는 DBD 플라즈마 젯의 밀도차이에 의한 스펙트럼 분포의 차이로 나타난다. 발생된 플라즈마 젯의 스펙트럼의 분석을 통한 활성종의 발생과 강도의 차이는 장치를 활용하는데 있어서 중요한 요소이다. 본 논문에서는 Ar가스를 이용한 대기압 볼륨 DBD방식의 플라즈마 젯 발생장치를 제안된 설계방법에 따라 구성하였다. 플라즈마 젯의 발생을 위한 유량의 의존도를 규명하기 위한 Ar가스의 유동해석을 시뮬레이션을 통해 확인하였고 프로토타입 시스템에서는 MFC를 통한 유량제어를 통해 최적의 플라즈마 젯 불렛형상을 발생시키고 발생된 플라즈마 젯의 특성을 분석하기 위해 스펙트로미터를 이용한 플라즈마 젯의 특성을 분석하였다. 제안된 시스템의 설계방법을 통한 장치에서 최적의 플라즈마 젯 형상 확립방법과 EOS 상에서 활성종에 대한 결과를 확인하였다.

Measurement of electron density of atmospheric pressure Ar plasma jet by using Michelson interferometer

  • Lim, Jun-Sup;Hong, Young June;Choi, Eun Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.195.1-195.1
    • /
    • 2016
  • Currently, as Plasma application is expanded to the industrial and medical industrial, low temperature plasma applications became important. Especially in medical and biology, many researchers have studied about generated radical species in atmospheric pressure low temperature plasma directly adapted to human body. Therefore, so measurement their plasma parameter is very important work and is widely studied all around world. One of the plasma parameters is electron density and it is closely relative to radical production through the plasma source. some kinds of method to measuring the electron density are Thomson scattering spectroscopy and Millimeter-wave transmission measurement. But most methods have very expensive cost and complex configuration to composed of experiment system. We selected Michelson interferometer system which is very cheap and simple to setting up, so we tried to measuring electron density by laser interferometer with laser beam chopping module for measurement of temporal phase difference in plasma jet. To measuring electron density at atmospheric pressure Ar plasma jet, we obtained the temporal phase shift signal of interferometer. Phase difference of interferometer can occur because of change by refractive index of electron density in plasma jet. The electron density was able to estimate with this phase difference values by using physical formula about refractive index change of external electromagnetic wave in plasma. Our guiding laser used Helium-Neon laser of the centered wavelength of 632 nm. We installed chopper module which can make a 4kHz pulse laser signal at the laser front side. In this experiment, we obtained more exact synchronized phase difference between with and without plasma jet than reported data at last year. Especially, we found the phase difference between time range of discharge current. Electron density is changed from Townsend discharge's electron bombardment, so we observed the phase difference phenomenon and calculated the temporal electron density by using phase shift. In our result, we suggest that the electron density have approximately range between 1014~ 1015 cm-3 in atmospheric pressure Ar plasma jet.

  • PDF

Planar Laser-Induced Fluorescence (PLIF) Measurements of a Pulsed Electrothermal Plasma Jet

  • Kim, Jong-Uk;Kim, Youn J.;Byungyou Hong
    • Journal of Mechanical Science and Technology
    • /
    • 제15권12호
    • /
    • pp.1808-1815
    • /
    • 2001
  • The characteristics of a pulsed plasma jet originating from an electrothermal capillary discharge have been investigate using laser-induced fluorescence (LIF) measurement. Previous emission measurements of a 3.1 kJ plasma jet show trial upstream of the Mach disk the temperature and electron number density are about 14,000 K and and 10$\^$17/ cm$\^$-3/, while downstream of the Mach dick tole values are about 25,000 K and 10$\^$18/ cm$\^$-3/, respectively. However, these values are barred on line-of-sight integrated measurements that may be misleading. Hence, LIF is being used to provide both spatially and temporally resolved measurements. Our recent work has been directed at using planar laser-induced fluorescence (PLIF) imaging of atomic copper in the plasma jet flow field. Copper is a good candidate for PLIF studies because it is present throughout the plasma and has electronic transitions that provide an excellent pump-detect strategy. Our PLIF results to date show that emission measurements may give a misleading picture of the flow field, as there appeals to be a large amount of relatively low temperature copper outside the barrel shock. which may lead to errors in temperature inferred from emission spectroscopy. In this paper, the copper LIF image is presented and at the moment, relative density of atomic copper, which is distributed in the upstream of the pulsed plasma jet, is discussed qualitatively.

  • PDF

Plasma Propagation Speed and Electron Temperature of Atmospheric Pressure Non-Thermal Ar Plasma Jet

  • 한국희;김동준;김현철;김윤중;김중길;이원영;나야나;조광섭
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.512-513
    • /
    • 2013
  • Space and time resolved discharge images from an atmospheric pressure non-thermal Ar plasma jet have been observed by a ICCD camera to investigate the electron temperatures. Plasma jet device consisting of a syringe electrode inserted into a glass tube has been introduced. A high voltage is applied to the syringe electrode. The syringe needle has an outer diameter of 1.8 mm, an inner diameter of 1.3 mm, and a total length of 39.0 mm. The needle is inserted into a glass tube of outer diameter 2.4 mm and inner diameter 2.0 mm, and a total length of 80.0 mm. The Ar plasma propagation speed on the cathode has been shown to be about 2.1 km/s at input discharge voltage of 3.6 kV, discharge current of 19.9 mA and driving frequency of about 45 kHz. Particularly, the electron temperature in plasma jet were found to be about 1.8 eV at input discharge voltage of 3.6 kV and driving frequency of 45 kHz, respectively.

  • PDF

Surface Treatment of a Titanium Implant using a low Temperature Atmospheric Pressure Plasma Jet

  • Lee, Hyun-Young;Ok, Jung-Woo;Lee, Ho-Jun;Kim, Gyoo Cheon;Lee, Hae June
    • Applied Science and Convergence Technology
    • /
    • 제25권3호
    • /
    • pp.51-55
    • /
    • 2016
  • The surface treatment of a titanium implant is investigated with a non-thermal atmospheric pressure plasma jet. The plasma jet is generated by the injection of He and $O_2$ gas mixture with a sinusoidal driving voltage of 3 kV or more and with a driving frequency of 20 kHz. The generated plasma plume has a length up to 35 mm from the jet outlet. The wettability of 4 different titanium surfaces with plasma treatments was measured by the contact angle analysis. The water contact angles were significantly reduced especially for $O_2/He$ mixture plasma, which was explained with the optical emission spectroscopy. Consequently, plasma treatment enhances wettability of the titanium surface significantly within the operation time of tens of seconds, which is practically helpful for tooth implantation.

감쇠파 고주파전압의 선행방전을 이용한 Plasma jet의 전기적 기동특성에 대한 실험적 연구 (The Experimental Research On The Electrical Characteristics For The Ignition Of Plasma Jet Using The Advance Discharge Of High Frequency Voltage With Attenuation)

  • 전춘생
    • 전기의세계
    • /
    • 제21권4호
    • /
    • pp.27-38
    • /
    • 1972
  • This paper discusses the characteristics about the ignition of D.C. main discharge is a plasma jet generator, manufactured for trial as non-transferred type, when the electrical energy appropriate to the ignition is supplied to the gap between the electrodes by using advance discharge of attenuating high frequency voltage generated by a high frequency oscillator with mercury spark gap. These characteristics are under the influences of (a) the length of mercury gap in high frequency oscillator and the quantity of hydrogen flow supplied to it, (b) the condenser capacity of the high frequency oscillator circuit, (c) the length of plasma jet torch in D.C. main discharge circuit and the quantity of argon flow supplied to it, (d) the circuit constants of D.C. main discharge circuit. The results for these characteristics, obtained by this research, are considered to be helpful to the designs for the ignition of a plasma jet as well as the welding arc stabilizer by high frequency discharge and the high frequency arc welder.

  • PDF