Browse > Article
http://dx.doi.org/10.5757/ASCT.2016.25.3.51

Surface Treatment of a Titanium Implant using a low Temperature Atmospheric Pressure Plasma Jet  

Lee, Hyun-Young (Department of Electrical and Computer Engineering, Pusan National University)
Ok, Jung-Woo (Busan Center, Korea Basic Science Institute)
Lee, Ho-Jun (Department of Electrical and Computer Engineering, Pusan National University)
Kim, Gyoo Cheon (Department of Oral Anatomy, Pusan National University)
Lee, Hae June (Department of Electrical and Computer Engineering, Pusan National University)
Publication Information
Applied Science and Convergence Technology / v.25, no.3, 2016 , pp. 51-55 More about this Journal
Abstract
The surface treatment of a titanium implant is investigated with a non-thermal atmospheric pressure plasma jet. The plasma jet is generated by the injection of He and $O_2$ gas mixture with a sinusoidal driving voltage of 3 kV or more and with a driving frequency of 20 kHz. The generated plasma plume has a length up to 35 mm from the jet outlet. The wettability of 4 different titanium surfaces with plasma treatments was measured by the contact angle analysis. The water contact angles were significantly reduced especially for $O_2/He$ mixture plasma, which was explained with the optical emission spectroscopy. Consequently, plasma treatment enhances wettability of the titanium surface significantly within the operation time of tens of seconds, which is practically helpful for tooth implantation.
Keywords
Atmospheric pressure plasma; Plasma jet; Surface treatment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. West, M. van der Schans, C. Xu, M. Cooke, and E. Wagenaars, Plasma Sources Sci. Technol. 25, 02LT01 (2016).   DOI
2 X. Lu, G. V. Naidis, M. Laroussi, S. Reuter, D. B. Graves, and K. Ostrikov, Phys. Reports 630, 1 (2016).   DOI
3 J. Garcia-Torres, D. Sylla, L. Molina, E. Crespo, J. Mota, and L. Bautista, Appl. Surf. Sci. 305, 292 (2014).   DOI
4 J. H. Yim, V. Rodriguez-Santiago, A. A. Williams, T. Gougousi, D. D. Pappas, and J. K. Hirvonen, Surf. Coat. Technol. 234, 21 (2013).   DOI
5 D. Mariotti, Appl. Phys. Lett. 92, 151505 (2008).   DOI
6 P. Chu, IEEE Trans. Plasma Sci. 35, 181 (2007).   DOI
7 G. Fridman, A. Brooks, M. Galasubramanian, A. Fridman, A. Gutsol, V. Vasilets, H. Ayan, and G. Friedman, Plasma Processes Polym. 4, 370 (2007).   DOI
8 J. Park, I. Henins, H. W. Herrman, G. S. Selwyn, and R. F. Hicks, J. Appl. Phys. 89, 20 (2001).   DOI
9 K. T. Rie, T. Stucky, R. A. Silva, E. Leitao, K. Bordji, J. Y. Jouzeau, and D. Mainard, Surface and Coatings Technology 74-75, 973-980 (1995).   DOI
10 P. I. Branemark, B. O. Hansson, R. Adell, U. Breine, J. Lindstrom, O. Hallen, and A. Ohman, Scand. J. Plast. Reconstr. Surg. Suppl. 16, 1-132 (1977).
11 T. Albrektsson, P. I Branemark, H. A. Hansson, and J. Lindstrom, Osseointegrated titanium implants anchorage in man (Springer-Verlag, London, 1981) p.155.
12 C. Von Wilmowsky, S. Bauer, R. Lutz, M. Meisel, F. W. Neukam, T. Toyoshima, P. Schmuki, E. Nkenke, and K. A. Schlegel, J. Biomed. Mater. Res. B. 89, 165 (2009).
13 S. Ponader, C. Von Wilmowsky, M. Widenmayer, R. Lutz, P. Heinl, C. Korener, R. F. Singer, E. Nkenke, F. W. Neukam, and K. A. Schlegel, J. Biomed. Mater. Res. A. 92, 56 (2010).
14 G. Zhao, Z. Schwartz, M. Wieland, F Rupp, J. Geis-Gerstorfer, D. L. Cochran, and B. D. Boyan, J. Biomed. Mater. Res. A 74, 49-58 (2005).
15 P. G. Coelho, G. Giro, H. S. Teixeira, C. Marin, L. Witek, V. P. Thompson, N. Tovar, and N. R. F. A. Silva, and J. Biomed. Mater. Res. A. 100, 1901 (2012).
16 B. O. Aronsson, J. Lausmaa, and B. Kasemo, J. Biomed. Mater. Res. A. 35, 49 (1997).   DOI
17 P. G. Coelho, C. Marin, R. Granato, G. Giro, M. Suzuki, and E. A. Bonfante, Clin. Oral. Implants. Res. 23, 132-135 (2012).   DOI
18 G. Giro, N. Tovar, L. Witek, C. Marin, N. R. F. Silva, E. A. Bonfante, and P. G. Coelho, J. Biomed. Mater. Res. A 101, 98-103 (2013).
19 Y. Hirakawa, R. Jimbo, Y. Shibata, I. Watanabe, A. Wennerberg, and T. Sawase, Clin. Oral. Implants. Res. 24, 139-144 (2013).   DOI
20 R. Jimbo, D. Ono, Y. Hirakawa, T. Odatsu, T. Tanaka, and T. Sawase, Clin. Implant. Dent. Relat. Res. 13, 79-85 (2011).   DOI
21 G. C. Kim, H. W. Lee, J. H. Byun, J. Chung, Y. C. Jeon, and J. K. Lee, Plasma. Process. Polym. 10, 199-206 (2013).   DOI
22 R. E. J. Sladek, E. Stoffels, R. Walraven, P. J. A. Tielbeek, and R. A. Koolhoven, IEEE Trans. Plasma Sci. 32, 1540-1543 (2004).   DOI
23 C. Schanudinn, D. Jaramillo, M. O. Freire, P. P. Sedghizadeh, A. Nguyen, P. Webster, J. W. Costerton, and C. Jiang, Int. Endod. J. 46, 930-937 (2013).   DOI
24 T. Du, J. Ma, P. Yang, Z. Xiong, X. Lu, and Y. Cao, J. Endod. 38, 545-549 (2012).   DOI
25 Q. Xiong, X. Lu, K. Ostrikov, Z. Xiong, Y. Xian, F. Zhou, C. Zou, J. Hu, W. Gong, and Z. Jiang, Phys. Plasmas 16, 043505 (2009).   DOI
26 A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, IEEE Trans. Plasma Sci. 26, 1685 (1998).   DOI
27 M. Laroussi, IEEE Trans. Plasma Sci. 36, 1298 (2008).   DOI
28 E. Stoffels, A. J. Filkweert, W. W. Stoffels, and G. M. W. Kroesen, Plasma Sources Sci. Technol. 11, 383 (2002).   DOI
29 K. H. Becker ,U. Kogelschatz, K. H. Schoenbach, and R. J. Barker, Non-Equilibrium Air Plasmas at Atmospheric Pressure (IOP, UK, 2005).
30 N. Sakai, A. Fujishima, T. Watanabe, and K. Hashimoto, J Phys. Chem. B 105, 3023 (2001).   DOI