• 제목/요약/키워드: Plasma gas heating

검색결과 61건 처리시간 0.025초

플라즈마/후가열 장치를 이용한 NOx 저감에 에틴($C_2H_4$)이 미치는 영향에 관한 연구 (Effect of ethene($C_2H_4$) on DeNOx using Plasma/Post-Heating System)

  • 정상호;이형상;박광서;전배혁;전광민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.157-162
    • /
    • 2002
  • The characteristics of DeNOx conversion process by plasma/post-heating system with the simulated gas containing ethene is investigated experimentally. Without plasma treatment, $NO-NO_2$ conversion doesn't occur by $400^{\circ}C$ in a mixture of $N_2/O_2$ with a trace gas of ethene. But $NO-NO_2$ conversion occurs as temperature increases above $400^{\circ}C$. The NO can, however, be converted to $NO_2$ at lower temperatures by treating the gas mixture with non-thermal plasma. The $NO-NO_2$ conversion enhances further by passing the plasma treated gas through the post-heating furnace. Results show that 20%${\sim}50%$ more conversion of NO to $NO_2$ is observed when the temperatures of the post-heating furnace are maintained at $300^{\circ}C$ or $400^{\circ}C$. The additional $NO-NO_2$ conversion by post-heating is due to the reaction of ethene with the byproducts or radicals generated from the plasma reaction.

  • PDF

히터 일체형 하이브리드 단판형 플라즈마 방전소자 (One-Plate Type Hybrid Plasma Discharge Device with Heating Element)

  • 최우진;최은혜;성형석;권진구;이성의
    • 한국전기전자재료학회논문지
    • /
    • 제32권4호
    • /
    • pp.320-326
    • /
    • 2019
  • Recently, the application of atmospheric plasma technology in air filtration is increasing. Sterilization by an atmospheric plasma device is very effective. However, ozone gas, which is generated during atmospheric plasma formation, poses a hazard to human health. To reduce the ozone gas during plasma discharge, we fabricated a one-plate hybrid plasma discharge device with a heating element, which can decompose ozone gas effectively by a simple heating action. In this study, we evaluated the plasma discharge characteristics and ozone concentrations with various Ar flow rates and temperatures. With increasing Ar gas flow rate, the ozone concentration and spectrum intensity increased till an Ar gas flow rate of 60 sccm, and decreased thereafter. When discharged in high temperature, the ozone concentration and spectrum intensity decreased. Further, to evaluate the state of the treated surface under various plasma discharge and heating conditions, we measured the variation in the contact angles on the surface. Regardless of the temperature, the contact angle increased with increasing discharge voltage. However, the contact angle increased when discharged at high temperature.

Effect of RF Bias on Plasma Parameters and Electron Energy Distribution in RF Biased Inductively Coupled Plasma

  • Lee, Hyo-Chang;Chung, Chin-Wook
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.492-492
    • /
    • 2012
  • RF biased inductively coupled plasma (ICP) has been widely used in various semiconductor etching processes and laboratory plasma researches. However, almost researches for the RF bias have been focused on the controls of dc self-bias voltages, even though the RF bias can change plasma parameters, such as electron temperature, plasma density, electron energy distribution (EED), and their spatial distributions. In this study, we report on the effect of the RF bias on the plasma parameters and the EEDs with various external parameters, such the RF bias power, the ICP power, the gas pressure, the gas mixture, and the frequency of RF bias. Our study shows the correlation between the RF bias and the plasma parameters and gives a crucial key for the understanding of collisionless electron heating mechanism in the RF biased ICP.

  • PDF

A Study on Neutral Atom Heating in Inductively Coupled Plasma

  • 서병훈;유신재;김정형;성대진;장홍영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.178-178
    • /
    • 2012
  • Neutral atom temperature was measured by Laser Rayleigh scattering method using neutral depletion by neutral heating with ideal gas law in Inductively coupled plasma. We observed sudden pressure change when plasma is turned on and off. We analyzed mechanism of neutral heating by employing zero-dimensional neutral and ion energy balance model simultaneously. The results showed that neutral atom temperature increase with ion density. The mechanism of neutral atom heating and cooling is mainly dominated by ion-neutral collision including elastic and charge-exchange collision and by wall cooling respectively.

  • PDF

식각 용기 가열에 의한 라디칼 손실 제어가 고선택비 산화막 식각에 미치는 영향 (Effect of the Radical Loss Control by the Chamber Wall Heating on the Highly Selective $SiO_2$ etching)

  • 김정훈;이호준;주정훈;황기웅
    • 한국진공학회지
    • /
    • 제5권2호
    • /
    • pp.169-174
    • /
    • 1996
  • The applications of the high density plasma sources to the etching in semiconductor fabrication process are actively studied because of the more strict requirement from the dry etching process due to shrinking down of the critical dimension. But in the oxide etching with the high density plasma sources, abundant fluorine atoms released from the flurocarbon feed gas make it difficult to get the highly selective $SiO_2/Si$ etching. In this study, to improve the $SiO_2/Si$ etch selectivity through the control of the radical loss channels, we propose the wall heating , one of methods of controlling loss mechanisms. With appearance mass spectroscopy(AMS) and actinometric optical emission spectroscopy(OES), the increase of both radicals impinging on the substrate and existing in bulk plasma, and the decrease of the fluorine atom with wall temperature are observed. As a result, a 40% improvement of the selectivity was achieved for the carbon rich feed gas.

  • PDF

가스차단기 최적설계를 위한 $SF_6$ 아크 플라즈마 CAE 해석 (CAE Analysis of $SF_6$ Arc Plasma for a Gas Circuit Breaker Design)

  • 이종철;안희섭;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.365-368
    • /
    • 2002
  • The design of industrial arc plasma systems is still largely based on trial and error although the situation is rapidly improving because of the available computational power at a cost which is still fast coming down. The desire to predict the behavior of arc plasma system, thus reducing the development cost, has been the motivation of arc research. To interrupt fault current, the most enormous duty of a circuit breaker, is achieved by separating two contacts in a interruption medium, $SF_{6}$ gas or air etc., and arc plasma is inevitably established between the contacts. The arc must be controlled and interrupted at an appropriate current zero. In order to analyze arc behavior in $SF_{6}$ gas circuit breakers, a numerical calculation method combined with flow field and electromagnetic field has been developed. The method has been applied to model arc generated in the Aachen nozzle and compared the results with the experimental results. Next, we have simulated the unsteady flow characteristics to be induced by arcing of AC cycle, and conformed that the method can predict arc behavior in account of thermal transport to $SF_{6}$ gas around the arc, such as increase of arc voltage near current zero and dependency of arc radius on arc current to maintain constant arc current density.

  • PDF

아크 플라즈마에 의한 PTFE 노즐 용삭현상 (ABLATION OF PTFE NOZZLE DRIVEN BY ARC PLASMA)

  • 이종철;김윤제
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.311-317
    • /
    • 2005
  • It has been the most progressive interruption technique to use the ablation gas from the surface of PTFE nozzle driven by arc plasma during switching process in $SF_6$ gas circuit breakers. This advanced interruption technique can reduce the required mechanical energy to compress and blow the gas for extinguishing the arc plasma between the electrodes due to using the ablation effect instead. In order to consider the phenomena during calculation of switching process, it is required to confirm the principles of ablation from PTFE nozzle as well as of arc plasma during switching process. In this study, we have calculated the switching process considered the ablation of PTFE nozzle driven by arc plasma using multidisciplinary simulation technique and compared the results with the data without the ablation effect. More $50\%$ difference of pressure rise inside expansion chamber has been found from the results and it should be indispensable for this type of computational work to consider and include the ablation effect of PTFE nozzle. Further study on turbulence and radiation will be followed.

  • PDF

DC 플라즈마 토치를 이용한 질화규소 분말의 기상합성 (Vapor phase synthesis of silicon nitride powder using DC plasma torch)

  • 황연;손용운;정헌생;최상근
    • 한국결정성장학회지
    • /
    • 제4권4호
    • /
    • pp.370-377
    • /
    • 1994
  • 비이송식DC 플라즈마 토치를 제작하고 이를 이용하여 질화규소 분말을 제조하였다. Ar 가스를 사용하여 플라즈마를 발생시켯으며, 발생된 플라즈마 flame으로 반응가스 및 reactive quenching 가스를 도입하였다. 토치의 하단부에 2개의 slit를 장착하여 가스의 도입 위치를 변화시킬 수 있게 하였다. $SiCl_4와 NH_3$를 출발원료로 하여 질화규소 분말을 제조하였다. 얻어진 분말은 무정형이었으며, 반응부산물을 제거하고 $1420^{\circ}C$에서 질소 분위기하에서 가열함으로써 결정화된 질화규소 분말을 얻었다. XPD pattern 및 IR 스펙트럼으로부터 질화규소 분말을 확인하였고, TEM을 사용하여 전후의 형상을 관찰하였다.

  • PDF

Development of RF Ion Source for Neutral Beam Injector in Fusion Devices

  • 장두희;박민;김선호;정승호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.550-551
    • /
    • 2013
  • Large-area RF-driven ion source is being developed at Germany for the heating and current drive of ITER plasmas. Negative hydrogen (deuterium) ion sources are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen ions have been successfully developed at IPP (Max-Planck- Institute for Plasma Physics, Garching) for ASDEX-U and W7-AS neutral beam injection (NBI) systems. In recent, the first NBI system (NBI-1) has been developed successfully for the KSTAR. The first and second long-pulse ion sources (LPIS-1 and LPIS-2) of NBI-1 system consist of a magnetic bucket plasma generator with multi-pole cusp fields, filament heating structure, and a set of tetrode accelerators with circular apertures. There is a development plan of large-area RF ion source at KAERI to extract the positive ions, which can be used for the second NBI (NBI-2) system of KSTAR, and to extract the negative ions for future fusion devices such as ITER and K-DEMO. The large-area RF ion source consists of a driver region, including a helical antenna (6-turn copper tube with an outer diameter of 6 mm) and a discharge chamber (ceramic and/or quartz tubes with an inner diameter of 200 mm, a height of 150 mm, and a thickness of 8 mm), and an expansion region (magnetic bucket of prototype LPIS in the KAERI). RF power can be transferred up to 10 kW with a fixed frequency of 2 MHz through a matching circuit (auto- and manual-matching apparatus). Argon gas is commonly injected to the initial ignition of RF plasma discharge, and then hydrogen gas instead of argon gas is finally injected for the RF plasma sustainment. The uniformities of plasma density and electron temperature at the lowest area of expansion region (a distance of 300 mm from the driver region) are measured by using two electrostatic probes in the directions of short- and long-dimension of expansion region.

  • PDF

글로우방전을 이용한 가스크로마토그라프 검출기의 개발 (Glow Discharge as Detector for Gas Chromatography)

  • 김효진;박일영;장성기;김박광;박만기
    • 약학회지
    • /
    • 제37권1호
    • /
    • pp.76-83
    • /
    • 1993
  • The changes in discharge current, emission and/or oscillation frequency of the electric oscillation of a glow discharge are the potential sensitive measure of the concentration of an impurity in the argon plasma supporting gas. A single jet enhanced glow discharge has been interfaced with the gas chromatograph via 1/8" O.D. tube with a heating pad to study the changes in discharge current. To investigate the optimum operating conditions of the glow discharge system as detector for gas chromatography, pressure, gas flow rate, discharge current, distance between the anode and the cathode have been studied.

  • PDF