• Title/Summary/Keyword: Plasma display

Search Result 1,334, Processing Time 0.027 seconds

LGE's 60-inch AC Plasma Display Panel with $1365{\times}768$

  • Park, Myung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.225-227
    • /
    • 2000
  • LGE developed and demonstrated the first 60-inch full color AC plasma display panel with the 1365 ${\times}$ 768 resolution. Both Sol-gel and E-beam method have been tried for MgO layer, and photolithography has been used for electrodes and phosphor layer to fabricate a 60-inch panel. Selective Erase, Selective Write, Address Display Separate, and Address While Display driving scheme have been tested. Its luminance and contrast ratio is about $550\;cd/m^2$ and 500:1, respectively.

  • PDF

Analysis of the luminous efficacy improvement in Full HD ac Plasma Display Panel

  • Bae, Hyun-Sook;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.29-32
    • /
    • 2007
  • We analyzed the effect of cell resolution on the luminous efficacy through three-dimensional numerical simulation to understand the inherent discharge mechanism change in the plasma display panel. As the resolution increases from VGA to Full HD, the luminous efficacy decreases. With higher Xe content, VUV generation efficacy of Full HD becomes much lower than those of VGA or XGA cells, due to the increased plasma loss and lower electron heating. However a long electrode gap $140{\mu}m$ in Full HD cell with Ne-Xe [20%] results in the high luminous efficacy comparable to that of the XGA cell with $60{\mu}m$ gap. When comparing the effects of Xe content variation on the luminous efficacy of two different subpixel types, i. e., SDE (Segmented electrode in Delta color arrayed, Enclosed subpixel) [1] and conventional stripe barrier type in the XGA and Full HD cells, the luminous efficacy of SDE structure shows higher improvement in Full HD resolution compared with that of conventional type XGA cell, whose cause is identified as the reduced plasma loss.

  • PDF

Plasma Density Measurement of Linear Atmospheric Pressure DBD Source Using Impedance Variation Method (임피던스 변화를 이용한 선형 대기압 DBD 플라즈마 밀도 측정)

  • Shin, Gi Won;Lee, Hwan Hee;Kwon, Hee Tae;Kim, Woo Jae;Seo, Young Chul;Kwon, Gi-Chung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.16-19
    • /
    • 2018
  • The development speed of semiconductor and display device manufacturing technology is growing faster than the development speed of process equipment. So, there is a growing need for process diagnostic technology that can measure process conditions in real time and directly. In this study, a plasma diagnosis was carried out using impedance variation due to the plasma discharge. Variation of the measurement impedance appears as a voltage change at the reference impedance, and the plasma density is calculated using this. The above experiment was conducted by integrating the plasma diagnosis system and the linear atmospheric pressure DBD plasma source. It was confirmed that plasma density varies depending on various parameters (gas flow rate, $Ar/O_2$ mixture ratio, Input power).

A Study on the Discharge Characteristics with New Penning Gas Mixture for AC plasma display panel (AC plasma display panel의 페닝 방전가스 혼합비 변화에 따른 방전특성 연구)

  • 박문필;이승준;이재경;황호정
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.2
    • /
    • pp.127-134
    • /
    • 2002
  • Recently, Plasma display panel(PDP) has been in the spotlight as one of the next generation flat-panel-display device. The luminance and luminous efficiency improvement is the hot issues for making a plasma display into a large flat panel device. In this paper, We suggest a new penning gas mixture, in order to find the optimum mixture gas in plasma display panel. The optimum gas composition has been found by the partial pressure of inert gases(such as Af and Kr added to matrix of He(70%)-Ne(27%)Xe(3%) and Ne(96%)-Xe(4%)). The influences of Ar or Kr addition to Ne(96%)-Xe(4%) and He(70%)-Ne(27%)-Xe(3%) mixture gases are experimentally investigated for AC Plasma Display Panel. When rare As(0.01%-0.03%) or Kr(0.01%-0.03%) is added Ne-Xe and He-Ne-Xe mixture gases, the luminance increases over 10%-20% and luminous efficiency increases over 10%-20% at 200 Torr. It is sure that luminance and efficiency are improved by Penning effect. Also, This influence of Penning effect is shown by increased wall charge(10%-25%). In addition to the result, firing voltage and minimum sustain voltage was approximately decreased by 2V-3V.

Bottom Gate Microcrystalline Silicon TFT Fabricated on Plasma Treated Silicon Nitride

  • Huang, Jung-Jie;Chen, Yung-Pei;Lin, Hung-Chien;Yao, Hsiao-Chiang;Lee, Cheng-Chung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.218-221
    • /
    • 2008
  • Bottom-gate microcrystalline silicon thin film transistors (${\mu}c$-Si:H TFTs) were fabricated on glass and transparent polyimide substrates by conventional 13.56 MHz RF plasma enhanced chemical vapor deposition at $200^{\circ}C$. The deposition rate of the ${\mu}c$-Si:H film is 24 nm/min and the amorphous incubation layer near the ${\mu}c$-Si:H/silicon nitride interface is unobvious. The threshold voltage of ${\mu}c$-Si:H TFTs can be improved by $H_2$ or $NH_3$ plasma pretreatment silicon nitride film.

  • PDF

Discharge Characteristics of a Plasma Display using Vertical Auxiliary Electrodes

  • Moon, Cheol-Hee
    • Journal of Information Display
    • /
    • v.9 no.1
    • /
    • pp.20-25
    • /
    • 2008
  • In a conventional plasma display, the bus electrode was located on the ITO electrode at the outer part of each cell. We propose a new electrode configuration using vertical auxiliary electrodes which play a role of electrically connecting ITO and bus electrodes with the aim of enhancing discharge and luminous characteristics of the PDP (Plasma Display Panel). In this paper, luminance and luminous efficiency of the 3 in.-diagonal test panel are measured with various number of vertical auxiliary electrodes such as 2, 50 and 150. The change in the luminous characteristics is explained in connection with the discharge characteristics of the PDP cells such as current peak, IR emission peak and ICCD picture image.

Current Status and Technology of Plasma Displays (플라즈마 디스플레이의 기술과 현황)

  • 강정원;김영섭
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.4
    • /
    • pp.1-4
    • /
    • 2004
  • 21세기에 접어들면서 Digital시험방송의 시작과 다양한 Contents의 유입으로 평판디스플레이 (Flat Panel Display)에 관한 관심과 수요가 증가하고 있다. 이 중 PDP는 90년대 후반부터 양산 및 개발을 시작하여 현재는 40 inch에서 60 inch 화면 크기의 제품을 시장에서 구입할 수 있으며, 03년도에는 80 inch 크기의 Proto-type Model을 공개한 바 있다. PDP는 40 inch 이상의 대면적 구현이 용이하다는 점, CRT와 동등 수준의 화상 구현이 가능하다는 점, 제조공법이 간단하고 제조원가가 저렴하다는 점 등을 특징으로 시장을 확대하고 있으나, 좀 더 대중적인 디스플레이가 되기 위해서는 고휘도 및 고효율화, 화질개선 그리고 저가격화 등과 같은 과제를 해결하여야 한다. 본 논문에서는 PDP의 개발역사 및 시장현황, 구조 및 구동 방법 그리고 해결과제 및 전망에 대해서 포괄적으로 살펴보기로 한다.

  • PDF

The effect of the cell size on the discharge characteristics of a plasma display panel

  • Moon, Cheol-Hee
    • Journal of Information Display
    • /
    • v.12 no.1
    • /
    • pp.29-35
    • /
    • 2011
  • In this study, plasma display panels with three different cell volumes were prepared by changing the spaces between the vertical barrier ribs into two and three times the reference structure. The discharge gap and area of the segmented ITO electrode were the same for the three cases, and Ne.20%Xe gas was used. The luminance and luminance efficiency were measured using applied voltage variations. The time evolution and intensity distribution of the infrared, which are related to the vacuum ultraviolet, were observed via intensified, charged, coupled device, and the visible-light intensity profiles were observed using PR-900 to analyze the discharge phenomena in the discharge cell.

Numerical Analysis of Micro-Discharge in Plasma Display Panel Using 2-Fluid, 2-Dimensional MD equations (2차원, 2유체 MHD 식을 이용한 플라즈마 디스플레이 판넬의 미소 방전 특성 해석)

  • Choi, Kyung-Cheol;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.911-914
    • /
    • 1992
  • We have investigated the micro-discharge in plasma display panel using 2 dimensional 2 fluid MHD equations. Plasma display utilizes the physical phenomena of the normal glow or abnormal glow and is considered to be able to provide the largest display area among various flat panel. 2 fluid, 2 dimensional Magneto-Hydro-Dynamic equations are applied to Computational field of 100${\times}$800${\mu}m^2$. Time varing glows and after-glows were investigated for 11 $\mu$sec. We obtained the distribution of the microscopic variables such as the density, temperature, velocity of Ne+Ar0.1% gas plasma. During the first 6$\mu$ sec, glow discharge dued to DC pulse was investigated. Time varing phenomena of after-glow was also investigated during the last 5 $\mu$set. From results, it was found that the driving efficiency of a DC Plasma Display Panel could be improved when the diffusion of ions and electrons are controlled by the pulses applied to the auxiliary anode.

  • PDF

The 2-dimensional Discharge Cell Simulation for the Analysis of the Peset and Addressing of an Alternating Current Plasma Display Panel

  • Kim, Joong-Kyun;Chung, Woo-Jun;Seo, Jeong-Hyun;Whang, Ki-Woong
    • Journal of Information Display
    • /
    • v.2 no.1
    • /
    • pp.24-33
    • /
    • 2001
  • The characteristics of the reset and the address discharges of an alternating current Plasma Display Panel (ac PDP) were studied using 2-dimensional numerical discharge cell simulation. We investigated the wall charge variations during the reset discharge adopting ramping reset pulse and the subsequent addressing discharge. The roles of the ramping reset scheme can be divided into two stages, each electrode gathers wall charges during ramping-up of the initial stage and the built-up wall charges are lost during ramping-down of the later stage. Address discharge does not only change the wall charge distributions on the address and the scan electrodes but also on the sustain electrode. The increase in the wall charges on the sustain electrode was observed with the variation of the applied voltage to the sustain electrode during the address period. The increase of the applied voltage to the sustain electrode during the address period is expected to induce the decrease of the sustain voltage during the display period.

  • PDF