• Title/Summary/Keyword: Plasma Gases

Search Result 358, Processing Time 0.025 seconds

Raman Spectroscopy Studies of Graphene Nanoribbons and Chemical Doping in Graphene

  • Ryu, Sun-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.15-15
    • /
    • 2011
  • Atom-thick graphene membrane and nano-sized graphene objects (NGOs) hold substantial potential for applications in future molecular-scale integrated electronics, transparent conducting membranes, nanocomposites, etc. To realize this potential, chemical properties of graphene need to be understood and diagnostic methods for various NGOs are also required. To meet these needs, chemical properties of graphene and optical diagnostics of graphene nanoribbons (GNRs) have been explored by Raman spectroscopy, AFM and STM scanning probes. The first part of the talk will illustrate the role of underlying silicon dioxide substrates and ambient gases in the ubiquitous hole doping of graphene. An STM study reveals that thermal annealing generates out-of-plane deformation of nanometer-scale wavelength and distortion in $sp^2$ bonding on an atomic scale. Graphene deformed by annealing is found to be chemically active enough to bind molecular oxygen, which leads to a strong hole-doping. The talk will also introduce Raman spectroscopy studies of GNRs which are known to have nonzero electronic bandgap due to confinement effect. GNRs of width ranging from 15 nm to 100 nm have been prepared by e-beam lithographic patterning of mechanically exfoliated graphene followed by oxygen plasma etching. Raman spectra of narrow GNRs can be characterized by upshifted G band and strong disorder-related D band originating from scattering at ribbon edges. Detailed analysis of the G, D, and 2D bands of GNRs proves that Raman spectroscopy is still a reliable tool in characterizing GNRs despite their nanometer width.

  • PDF

Effect of Propene($C_3H_6$) ON NO-$NO_2$ Conversion Process in a Pulsed Corona Discharge (펄스코로나 방전에서 프로핀($C_3H_6$)이 NO-$NO_2$ 변환에 미치는 영향에 관한 연구)

  • 박광서;전배혁;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.67-77
    • /
    • 2000
  • Investigated was the effect of propene(C3H6) on the NO-NO2 conversion in dry exhaust gases from lean burn engine using a pulsed corona discharge. A kinetic model was developed to characterize the plasma chemistry in simulated exhausts containing propene. The model uses ELENDIF program to solve Boltzmann equation for electron energy distribution function, and CHEMKIN-II program to solve stiff ODE(ordinary differential equation) problems for species concentrations. The corona discharge energy per pulse and the time-space averaged E/N were obtained by fitting the model to experimental data. The model calculation shows good agreement for NO and NO2 concentrations with the experimental data, and predicts the formation of byproducts such as CH2O, CH3HCO, CO AND CH3NO2 Propene enhances the NOx conversion enormously at lower energy density and the NOx conversion increases with the increase of initial propene and oxygen concentration, and temperature.

  • PDF

A Reproducible High Etch Rate ICP Process for Etching of Via-Hole Grounds in 200μm Thick GaAs MMICs

  • Rawal, D.S.;Agarwal, Vanita R.;Sharma, H.S.;Sehgal, B.K.;Muralidharan, R.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.3
    • /
    • pp.244-250
    • /
    • 2008
  • An inductively coupled plasma etching process to replace an existing slower rate reactive ion etching process for $60{\mu}m$ diameter via-holes using Cl2/BCl3 gases has been investigated. Process pressure and platen power were varied at a constant ICP coil power to reproduce the RIE etched $200{\mu}m$ deep via profile, at high etch rate. Desired etch profile was obtained at 40 m Torr pressure, 950 W coil power, 90W platen power with an etch rate ${\sim}4{\mu}m$/min and via etch yield >90% over a 3-inch wafer, using $24{\mu}m$ thick photoresist mask. The etch uniformity and reproducibility obtained for the process were better than 4%. The metallized via-hole dc resistance measured was ${\sim}0.5{\Omega}$ and via inductance value measured was $\sim$83 pH.

Electrochemical Evaluation of Si-Incorporated Diamond-Like Carbon (DLC) Coatings Deposited on STS 316L and Ti Alloy for Biomedical Applications

  • Kim, Jung-Gu;Lee, Kwang-Ryeol;Kim, Young-Sik;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.18-23
    • /
    • 2007
  • DLC coatings have been deposited onto substrate of STS 316L and Ti alloy using r.f. PACVD (plasma-assisted chemical vapor deposition) with a mixture of $C_{6}H_{6}$ and $SiH_{4}$ as the process gases. Corrosion performance of DLC coatings was investigated by electrochemical techniques (potentiodynamic polarization test and electrochemical impedance spectroscopy) and surface analysis (scanning electron microscopy). The electrolyte used in this test was a 0.89% NaCl solution of pH 7.4 at temperature $37^{\circ}C$. The porosity and protective efficiency of DLC coatings were obtained using potentiodynamic polarization test. Moreover, the delamination area and volume fraction of water uptake of DLC coatings as a function of immersion time were calculated using electrochemical impedance spectroscopy. This study provides the reliable and quantitative data for assessment of the effect of substrate on corrosion performance of Si-DLC coatings. The results showed that Si-DLC coating on Ti alloy could improve corrosion resistance more than that on STS 316L in the simulated body fluid environment. This could be attributed to the formation of a dense and low-porosity coating, which impedes the penetration of water and ions.

The Analysis of Electron Transport Coefficients in Kr and Xe Atom Gas (Kr과 Xe 원자기체의 전자수송계수의 해석)

  • Jeon, Byung-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.8
    • /
    • pp.104-108
    • /
    • 2008
  • Accurate sets of electron collision cross sections and the electron transport coefficients for atoms and molecules are necessary for quantitative understanding of plasma phenomena Kr and Xe atom are used in many industrial applications, such as in PDP and fluorescent induction lamps(FILs). Therefore, we analysed and calculated the electron transport coefficients, the electron drift velocity W, the longitudinal and transverse diffusion coefficient $ND_L$ and $ND_T$, and the ionization coefficient $\alpha$/N in pure Kr and Xe gases over the wide E/N range from 0.001 to 500[Td] at 1[Torr] by two-tenn approximation of the Boltzmann equation.

A study on the TiN coating applied to a rolling wire probe

  • Song, Young-Sik;S. K. Yang;Kim, J.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.118-118
    • /
    • 2003
  • In a rolling wire probe, a key component of an inspection apparatus for PDP electrode patterns, the electric performance of it is known to be strongly dependent on the surface condition of a collet pin, a needle pin, and a wire. However, the collet and needle pins rotate very rapidly in contact with each other, which results in the degradation of the surface by the heat and friction and finally the formation of black wear marks on the surface after a several hundred hours test. Once the black wear marks appear on the surface, the electric resistance of the probe increases sharply and so the integrity of the probe is severely damaged. In this experiment, TiN coating, which has excellent electric conductances and good wear-resistance, has been applied on the surface of collect and needle pins for preventing the surface damages. In order to achieve the homogeneous coating with a good adhesion property, special coating substrate stages and jigs were designed and applied during coating. TiN has been deposited using 99.999% Titanium target by a DC reactive sputtering method. According to the components and jigs, processing parameters, such as DC power, RF bias and the flow rate ratio of Ar and N$_2$ used as reactive gases, has been controlled to obtain good TiN films. Detailed problems and solutions for applying the new substrate stages and jigs will be discussed.

  • PDF

Characterization of structural and field-emissive properties of diamond films in terms of growth conditions and additive gases (증착변수 및 첨가가스에 따른 다이아몬드 박막의 구조적 물성 및 전계방출 특성의 변화 분석)

  • Park, Jae-Hyun;Lee, Tae-Hoon;Park, Chang-Kyun;Seo, Soo-Hyung;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1571-1573
    • /
    • 2003
  • Diamond films including nanocystalline and graphite phase are grown by microwave plasma chemical vapor deposition using $N_2$ additives and negative substrate bias at growth step. The microstructure of the films is controlled by changing $N_2$ gas ratio and negative bias. Defects and grain boundaries between diamond and graphite are proposed to be crucial factors for forming the conducting path of electron emissions. The effect of growth parameters on the film microstructure are investigated by Raman spectroscopy and scanning electron microscopy(SEM). Electron emission characteristics are also examined in terms of the film growth conditions.

  • PDF

Surface Properties of Re-Ir Coating Thin Film on Tungsten Carbide Surface (Tungsten Carbide 표면에 코팅된 Re-Ir 박막의 표면 특성)

  • Lee, Ho-Shik;Cheon, Min-Woo;Park, Yong-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.219-223
    • /
    • 2011
  • Rhenium-Iridium(Re-Ir) thin films were deposited onto the tungsten carbide(WC) molding core by sputtering system. The Re-Ir films were prepared by multi-target sputtering with iridium, rhenium and chromium as the sources. Argon and nitrogen were inlet into the chamber to be the plasma and reactive gases. The Re-Ir thin films were prepared with targets having atomic percent of 3:7 and the Re-Ir thin films were formed with 240 nm thickness. The Re-Ir thin films on tungsten carbide molding core were analyzed by scanning electron microscope(SEM) and surface roughness. Also, adhesion strength and coefficient friction of Re-Ir thin film were examined. The Re-Ir coating technique has been intensive efforts in the field of coating process because the coating technique and process have been their feature, like hardness, high elasticity, abrasion resistance and mechanical stability and also have been applied widely the industrial and biomedical areas. In this report, tungsten carbide(WC) molding core was manufactures using high performance precision machining and the efforts of Re-Ir coating on the surface roughness.

Fabrication and properties of Xe plasma flat fluorescent lamp (LCD Backlight용 FFL(Flat Fluorescent Lamp)의 제작 및 특성 연구)

  • Kang, Jong-Hyun;Lee, Yang-Kyu;Heo, Sung-Taek;Oh, Myung-Hoon;Lee, Dong-Gu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.431-432
    • /
    • 2007
  • In this study, we used screen printing on the rear glass with silver electrodes, phosphor and a dielectric which is on the silver electrodes, and carried out firing in the temperature of $550^{\circ}C$, $570^{\circ}C$, $450^{\circ}C$ each. To seal the rear and top glass together, we used crystalline frit paste as a sealing material with dispenser and carried out firing up to $450^{\circ}C$. As using this panel, we focused on optimizing the condition which influences characteristics of discharging by the distance between electrodes, electrode structure, type and pressure of gases for FFL.

  • PDF

Rapid and massive throughput analysis of a constant volume high-pressure gas injection system

  • Ren, Xiaoli;Zhai, Jia;Wang, Jihong;Ren, Ge
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.908-914
    • /
    • 2019
  • Fusion power shutdown system (FPSS) is a safety system to stop plasma in case of accidents or incidents. The gas injection system for the FPSS presented in this work is designed to research the flow development in a closed system. As the efficiency of the system is a crucial property, plenty of experiments are executed to get optimum parameters. In this system, the flow is driven by the pressure difference between a gas storage tank and a vacuum vessel with a source pressure. The idea is based on a constant volume system without extra source gases to guarantee rapid response and high throughput. Among them, valves and gas species are studied because their properties could influence the velocity of the fluid field. Then source pressures and volumes are emphasized to investigate the volume flow rate of the injection. The source pressure has a considerable effect on the injected volume. From the data, proper parameters are extracted to achieve the best performance of the FPSS. Finally, experimental results are used as a quantitative benchmark for simulations which can add our understanding of the inner gas flow in the pipeline. In generally, there is a good consistency and the obtained correlations will be applied in further study and design for the FPSS.