• 제목/요약/키워드: Plasma Catalyst

검색결과 209건 처리시간 0.022초

A Study on the Characteristics of Plasma Blacks Prepared by Plasma Pyrolysis Over Metals Coated Honeycomb Catalysts

  • Park, Soo-Yeop;Lee, Joong-Kee;Yoo, Kyung-Seun;Cho, Won-Ihl;Baek, Young-Soon
    • Carbon letters
    • /
    • 제4권2호
    • /
    • pp.74-78
    • /
    • 2003
  • Four kinds of plasma blacks were prepared by plasma pyrolysis under various metallic catalysts coated on honeycomb, and investigated the catalytic effect on the characteristics of the plasma blacks prepared under plasma pyrolysis condition. Pt, Pt-Rh, and Pd catalysts were employed as active materials to prepare the plasma blacks. In the experimental range studied, the metallic catalysts influenced on surface area, particle size, surface oxygen content and electrical conductivity of the plasma blacks prepared. It was showed that more dense particle of plasma blacks were prepared under existence of metallic catalysts. Presence of the metallic catalyst reduces the electrical resistivity of plasma blacks due to the decrease in the amount of oxygen functional groups. The highest electrical conductivity of plasma black was observed in the Pt catalyst and then followed by those Pt-Rh, Pd and bare cordierite honeycomb.

  • PDF

Characteristics of Plasma Blacks Used as an Electrode of Direct Formic Acid Fuel Cell

  • Park, Young-Sook;Choi, Jong-Ho;Han, Jong-Hee;Lim, Tae-Hoon;Beak, Young-Soon;Ju, Jeh-Beck;Shon, Tae-Won;Lee, Joong-Kee
    • Carbon letters
    • /
    • 제6권1호
    • /
    • pp.41-46
    • /
    • 2005
  • Plasma carbon blacks of 20~30 nm diameter were synthesized by direct decomposition of natural gas using a hybrid plasma torch system with 50 kW direct current and 4 MHz of radio frequency. The insulating rector which inside diameter of 400 mm and length of 1500 mm, respectively was kept at 300~$400^{\circ}C$ during the preparation. The ultimate analysis of plasma carbon blacks reveals that the raw plasma carbon blacks contains a large quantity of volatile which is mainly consist of hydrogen. Therefore devolatilization of raw plasma carbon blacks were carried out at $900^{\circ}C$ for one hour under nitrogen atmosphere. The devolatilization leads to the decrease in electrical resistivity and surface oxygen functional groups of plasma carbon black significantly. In order to investigate the plasma carbon as a catalyst support, devolatilized plasma black at $900^{\circ}C$ (DPB) supported PtAu catalyst was synthesized by sodium boronhydride reduction method. Electrochemical measurements and direct formic acid fuel cell test indicated that catalytic activity of DPB supported PtAu catalyst for formic acid oxidation was similar to that of Vulcan XC-72 of commercial carbon black supported one.

  • PDF

Carbon Nanotube Deposition using Helicon Plasma CVD at Low Temperature

  • Muroyama, Masakazu;Kazuto, Kimura;Yagi, Takao;Inoue, Kouji;Saito, Ichiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.201-202
    • /
    • 2003
  • We developed a novel growth method of aligned carbon nanotubes. Aligned carbon nanotubes are grown on a metal catalyst on a glass substrate using biased Helicon plasma chemical vapor deposition (HPECVD) of $CH_4/H_2$ gases from 400 C to 500 C. The Helicon plasma source is one of the high-density plasma sources and is promising for low temperature carbon deposition. A Ni film was used as a catalyst to reduce the activation energy of the nanotubes' growth. The carbon nanotubes were deposited on the nickel catalysis layer selectively.

  • PDF

대기압플라즈마 및 오존 분해촉매를 이용한 트리클로로에틸렌의 분해효율 증진 연구 (A Study for improving Decomposition Efficiency of Trichloroethylene using Atmospheric Plasma Reactor and Ozone Decomposing Catalyst)

  • 한상보;박재윤;박상현
    • 조명전기설비학회논문지
    • /
    • 제22권12호
    • /
    • pp.142-149
    • /
    • 2008
  • 본 논문은 비열평형 플라즈마와 촉매를 이용하여 트리클로로에틸렌의 효과적인 분해방법을 제안하였다. 이를 위하여 이산화망간과 알루미나 펠렛을 플라즈마 리액터 내부에 충진한 리액터를 설계하였다. 이산화망간 충진 리백터를 이용할 경우에는 산소를 포함한 가스중의 방전에 의해 발생된 오존이 촉매 표면에서 분해되는 동안에 발생된 산소원자 라디칼에 의하여 TCE의 분해율이 향상됨을 알 수 있었다. 그리고 알루미나를 충진한 경우에는 TCE DCAC로 산화되었으며, COx 및 $Cl_2$와 같은 저분자상으로 많이 분해되지 않았다. 그러나 알루미나 충진 리액터에 의한 플라즈마 처리된 가스를 리액터 후단에 설치한 이산화망간 촉매를 통과시킴에 의하여 분해율이 매우 향상됨을 알 수 있었다. 따라서, 플라즈마 프로세스에 이산화망간을 응용함에 의하여 오존 분해에 따른 촉매 표면의 산소원자 라디칼에 의하여 TCE 및 분해 생성물(DCAC)를 효율적으로 분해하는 것이 가능하다.

매우 작은 크기의 촉매 알갱이를 지지하기 위한 촉매 지지대용 탄소 나노/마이크로 코일의 합성 (Synthesis of the Carbon Nano/micro Coils Applicable to the Catalyst Support to Hold the Tiny Catalyst Grain)

  • 박찬호;김성훈
    • 한국진공학회지
    • /
    • 제22권6호
    • /
    • pp.277-284
    • /
    • 2013
  • 아세틸렌과 수소기체를 원료기체로 하고 육불화황을 첨가기체로 하여 열화학 기상 증착하에서 탄소코일을 합성하였다. 이 때 산화실리콘 기판위의 니켈막을 탄소코일 성장의 촉매로 사용하였다. 성장된 탄소코일의 생성밀도, 형상, 기하구조 등을 수소 플라즈마 전처리의 유무에 따라 조사하였다. 상대적으로 짧은 시간(1분)의 수소 플라즈마 전처리는 탄소 마이크로 코일을 우세하게 성장시켰다. 긴 시간(30분)동안의 수소플라즈마 전처리는 탄소마이크로 성장 축을 따라 수많은 탄소 나노코일이 들어붙어 있는 특이한 구조를 보였다. 이 특이한 구조는 매우 작은 니켈 촉매의 알갱이를 효과적으로 지지할 수 있는 촉매 지지대로서의 역할을 할 수 있을 것으로 예견되었다.

Enhanced performance at an early state of hydrocarbon selective catalyst reduction of NOx by atmospheric pressure plasma

  • Nguyen, Duc Ba;Heo, Il Jeong;Mok, Young Sun
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.372-379
    • /
    • 2018
  • The improvement of $NO_x$ reduction by $Ag/{\gamma}-Al_2O_3$ with a hydrocarbon ($n-C_7H_6$) in the early state was investigated in a packed-bed dielectric barrier discharge plasma reactor. The results revealed that the combination of plasma with the catalyst enhanced $NO_x$ reduction efficiency at low operating temperatures, depending on the temperature and specific input energy. To sum up, the poor performance of the catalytic $NO_x$ reduction at low temperatures in the early stage before reaching thermochemical steady state can be greatly compensated for by using the atmospheric-pressure plasma generated in the catalyst bed.

플라즈마 리액터 및 오존분해 촉매를 이용한 메탄올 및 에탄올로부터 수소발생특성 (Characteristics of Hydrogen Production from Methanol and Ethanol Using Plasma Reactor and Ozone Decomposition Catalyst)

  • 구본국;김영춘;장문국;김종현;박재윤;한상보
    • 조명전기설비학회논문지
    • /
    • 제25권10호
    • /
    • pp.116-124
    • /
    • 2011
  • In this work, the effect of the initial concentration of methanol and ethanol, and the addition of oxygen molecules were discussed to improve the hydrogen generation using non-thermal plasma reactor effectively. In addition, the effect of ozone decomposition catalyst of manganese dioxide and its quantity was investigated. First, hydrogen concentration increased until an initial concentration of about 40,000[ppm] of methanol and thereafter it was saturated. Henceforth, hydrogen concentration decreased with increasing the oxygen percent on the carrier gas of nitrogen about both substances. Related with the effect of catalyst, it increased upto 60[g], but it was not changed largely after that. Consequently, it is confirmed that the hybrid process using plasma process and catalytic surface chemical reaction is a very promising way to increase the efficiency of hydrogen generation as investigated in this work.

플라즈마 화학 기상 증착법을 이용한 탄소나노튜브의 성장 분석 및 전계방출 특성 (Field Emission Characteristics and Growth Analysis of Carbon Nanotubes by Plasma-enhanced Chemical Vapor Deposition)

  • 오정근;주병권;김남수
    • 한국전기전자재료학회논문지
    • /
    • 제16권12S호
    • /
    • pp.1248-1254
    • /
    • 2003
  • Carbon nanotubes(CNTs) are grown by using Co catalyst metal. CNTs fabricated by PECVD(plasma enhanced chemical vapor deposition) method are studied in terms of surface reaction and surface structure by TEM and Raman analysing method and ate analysed in its electrical field emission characteristics with variation of space between anode and cathode. Acetylene(C$_2$H$_2$) gas is used as the carbon source, while ammonia and hydrogen gas are used as catalyst and dilution gas. The CNTs grown by hydrogen(H$_2$) gas plasma indicates better vortical alignment, lower temperature process, and longer tip, compared to that grown by ammonia(NH$_3$) gas plasma. The CNTs fabricated with Co(cobalt) catalyst metal and PECVD method show the multiwall structure in mid-circle type in tip-end and the inner vacancy of 10nm. Emission properties of CNTs indicate the turn-on field to be 2.6 V/${\mu}{\textrm}{m}$ We suggest that CNTs can be possibly applied to the emitter tip of FEDs and high brightness flat lamp because of low temperature CNTs growth, low turn-on field.

플라즈마 화학 기상 증착법을 이용한 탄소나노튜브의 성장 분석 및 전계방출 특성 (Field Emission Characteristics and Growth Analysis of Carbon Nanotubes by plasma-enhanced chemical vapor deposition)

  • 오정근;주병권;김남수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.71-75
    • /
    • 2003
  • Carbon nanotubes(CNTs) are grown by using Co catalyst metal. CNTs fabricated by PECVD(plasma enhanced chemical vapor deposition) method are studied in terms of surface reaction and surface structure by TEM and Raman analysing method and are analysed in its electrical field emission characteristics with variation of space between anode and cathode. Acetylene($C_2H_2$) gas is used as the carbon source, while ammonia and hydrogen gas are used as catalyst and dilution gas. The CNTs grown by hydrogen($H_2$) gas plasma indicates better vertical alignment, lower temperature process and longer tip, compared to that grown by ammonia($NH_3$) gas plasma. The CNTs fabricated with Co(cobalt) catalyst metal and PECVD method show the multiwall structure in mid-circle type in tip-end and the inner vacancy of 10nm. Emission properties of CNTs indicate the turn-on field to be $2.6\;V/{\mu}m$. We suggest that CNTs can be possibly applied to the emitter tip of FEDs and high brightness flat lamp because of low temperature CNTs growth, low turn-on field.

  • PDF

R.F 마그네트론 스퍼트링으로 작성된 $TiO_2$박막의 $NO_x$ 감지 특성 ($NO_x$ Sensing Characteristic of $TiO_2$ Thin Film Deposited by R.F Magnetron Sputtering)

  • 고희석;박재윤;박상현
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권12호
    • /
    • pp.567-572
    • /
    • 2002
  • In these days, diesel vehicle or power plant emits $NO_X\; and SO_2$ which cause air pollution like acid-rain, ozone layer destroy and optical smoke, therefore there are many kinds of methods considered for removing them such as SCR, catalyst, plasma process, and plasma-catalyst hybrid process. T$TiO_2$ is commonly used as catalyst to remove $NO_X$ gas because it have very excellent chemical characteristic as photo catalyst. In this paper, $NO_X$ sensing characteristic of $TiO_2$ thin film deposited by R.F Magnetron sputtering is investigated. A finger shaped electrode on $Al_2$O$_3$ substrate is designed and $TiO_2$ is deposited on the electrode by the magnetron sputtering deposition system. Chemical composition of the deposited $TiO_2$ thin film is $TiO_{1.9}$ by RBS analysis. When the UV is irradiated on it with flowing air, capacitance of $TiO_2$ thin film increases, however, when NO gas is put into the system with air, it immediately decreases because of photo chemical reaction. and it monotonously decreases with increasing NO concentration.