• Title/Summary/Keyword: Plasma

Search Result 16,954, Processing Time 0.045 seconds

A Study on the Optimal Design of 5 kW Plasma Discharger (5kW급 플라즈마 방전장치 설계 최적화의 관한 연구)

  • Noh, Hyun-Kyu;Shin, Chul-Jun;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.150-159
    • /
    • 2016
  • This paper presents a study on the design optimization of a 5 kW plasma discharger for driving plasma reactor. The proposed study is composed of a high-frequency inverter based on the full-bridge circuit using soft switching techniques for high-frequency switching. The switching frequency in the operating region is the area of 130-200 kHz. By applying the LC resonance technique and a variable switching frequency, control technique is designed to be stable under changes in the load characteristics of the plasma reactor. This paper presents a quantitative analysis technique for design optimization. Experiments are performed according to load characteristic variations depending on the vacuum of the plasma reactor. This paper has verified the topology and design method for the 5 kW plasma discharger design.

Measurement of Changes in Work Function on MgO Protective Layer after H2-plasma Treatment (수소 Plasma 처리 후의 MgO 보호막에 대한 일함수 변화 측정)

  • Jeong, Jae-Cheon;Rhee, Seuk-Joo;Cho, Jae-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.611-614
    • /
    • 2007
  • The changes in the work $function({\Phi}_w)$ in the MgO protective layers after $plasma(Ar,\;H_2)$ treatment have been studied using ${\Upsilon}-focused$ ion beam $({\Upsilon}-FIB)$ system. The ${\Phi}_w$ was determined as follows: Ar-plasma $treatment({\Phi}_w=4.52eV)$, $H_2-plasma$ $treatment({\Phi}_w=5.65eV)$, and non-plasma $treatment({\Phi}_w=4.64eV)$. The results indicated that the H-plasma could not make any effective physical etching due to the small masses of hydrogen atoms and molecules while the hydration of H-plasma could grow some contaminating materials on the surface of MgO.

Effect of Gradient Plasma Power on TiN, TiCN Coating Deposited by PECVD Process (PECVD법에 의한 TiN, TiCN 증착 시 gradient plasma power가 코팅층에 미치는 영향)

  • Kim, D.J.;Shin, C.H.;Hur, J.;Nam, T.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.4
    • /
    • pp.236-240
    • /
    • 2004
  • Effect of plasma power on PECVD process were investigated in this study. TiN and TiCN films were deposited on nitrided STD11 steel with 600W, 1,200W and 1,600W plasma power. As the plasma power was increased, the preferred orientation was reinforced from (200) to (111) and the hardness of films was improved. The low plasma power was, however, effective for improving of adhesion force of films. Regarding above properties, TiN and TiCN films were deposited by gradient plasma power. It was possible to get high hardness as well as adhesion force through gradient plasma power.

Improved Self Plasma-Optical Emission Spectroscopy for In-situ Plasma Process Monitoring (실시간 플라즈마공정 모니터링을 위한 Self Plasma-Optical Emission Spectroscopy 성능 향상)

  • Jo, Kyung Jae;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.75-78
    • /
    • 2017
  • We reports improved monitoring performance of Self plasma-optical emission spectroscopy (SP-OES) by augmenting a by-pass tube to a conventional straight (or single) tube type self plasma reactor. SP-OES has been used as a tool for the monitoring of plasma chemistry indirectly in plasma process system. The benefits of SP-OES are low cost and easy installation, but some semiconductor industries who adopted commercialized SP-OES product experiencing less sensitivity and slow sensor response. OH out-gas chemistry monitoring was performed to have a direct comparison of a conventional single type tube and a by-pass type tube, and fluid dynamic simulation on the improved hardware design was also followed. It is observed faster pumping out of OH from the chamber in the by-pass type SP-OES.

  • PDF

Treatment of surface water using cold plasma for domestic water supply

  • Nguyen, Dung Van;Ho, Phong Quoc;Pham, Toan Van;Nguyen, Tuyen Van;Kim, Lavane
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.412-417
    • /
    • 2019
  • This paper presents the results of using cold plasma to treat surface water for domestic use purpose. Experimental results showed that cold plasma was an effective method for destroying bacteria in water. After treatment with cold plasma, concentration of coliform and Escherichia coli dramatically reduced. Besides, cold plasma significantly removed water odor, increased dissolved oxygen and decreased the concentration of chemical oxygen demand. However, cold plasma significantly raised the concentration of nitrite and nitrate. Other disadvantages of treating with cold plasma were conductivity increase and pH reduction. Pretreatment steps of coagulation, flocculation, sedimentation and sand filtration followed by disinfection with cold plasma exhibited a high efficiency in surface water treatment. All parameters of surface water after treatment by using the prototype satisfied with the allowance standard of domestic water quality.

Surface modification of materials by thermal plasma (열플라즈마를 이용한 재료의 표면개질)

  • Kang, Seong-Pyo;Lee, Han Jun;Kim, Tae-Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.308-318
    • /
    • 2022
  • The surface modification and treatment using thermal plasma were reviewed in academic fields. In general, thermal plasma is generated by direct current (DC) and radiofrequency (RF) power sources. Thermal spray coating, a typical commercial process using thermal plasma, is performed by DC thermal plasma, whereas other promising surface modifications have been reported and developed using RF thermal plasma. Beyond the thermal spray coating, physical and chemical surface modifications were attempted widely. Superhydrophobic surface treatment has a very high industrial demand particularly. Besides, RF thermal plasma system for large-area film surface treatment is being developed. Thermal plasma is especially suitable for the surface modification of low-dimensional nanomaterial (e.g., nanotubes) by utilizing high temperature and rapid quenching. It is able to synthesize and modify nanomaterials simultaneously in a one-pot process.

An Experimental Study on Multiple ICP & Helicon Source for Oxidation in Semiconductor Process

  • Lee, Jin-Won;Na, Byoung-Keun;An, Sang-Hyuk;Chang, Hong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.271-271
    • /
    • 2012
  • Many studies have been investigated on high density plasma source (Electron Cyclotron Resonance, Inductively Coupled Plasma, Helicon plasma) for large area source after It is announced that productivity of plasma process depends on plasma density. In this presentation, we will propose the new concept of the multiple source, which consists of a parallel connection of ICP sources and helicon plasma sources. For plasma uniformity, equivalent power (especially, equivalent current in ICP & Helicon) should distribute on each source. We design power feeding line as coaxial transmission line with same length of ground line in each source for equivalent power distribution. And we confirm the equivalent power distribution with simulation and experimental result. Based on basic study, we develop the plasma source for oxidation in semiconductor process. we will discuss the relationship between the processing parameters (With or WithOut magnet, operating pressure, input power ). In ICP, plasma density uniformity is uniform. In ICP with magnet (or Helicon) plasma density is not uniform. As a result, new design (magnet arrangement and gas distributor and etc..) are needed for uniform plasma density in ICP with magnet and Helicon.

  • PDF

Dependence of cation ratio in Oxynitride Glasses on the plasma etching rate

  • Lee, Jung-Ki;Hwang, Seong-Jin;Lee, Sung-Min;Kim, Hyung-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.44.2-44.2
    • /
    • 2009
  • Polycrystalline materials suchas yttria and alumina have been applied as a plasma resisting material for the plasma processing chamber. However, polycrystal line material may easily generate particles and the particles are sources of contamination during the plasma enhanced process. Amorphous material can be suitable to prevent particle generation due to absence of grain-boundaries. We manufactured nitrogen-containing $SiO_2-Al_2O_3-Y_2O_3$ based glasses with various contents of silicon and fixed nitrogen content. The thermal properties, mechanical properties and plasma etching rate were evaluated and compared for the different composition samples. The plasma etching behavior was estimated using XPS with depth profiling. From the result, the plasma etching rate highly depends on the silicon content and it may results from very low volatile temperature of SiF4 generated during plasma etching. The silicon concentration at the plasma etched surface was very low besides the concentration of yttrium and aluminum was relatively high than that of silicon due to high volatile temperature of fluorine compounds which consisted with aluminum and yttrium. Therefore, we conclude that the samples having low silicon content should be considered to obtain low plasma etching rate for the plasma resisting material.

  • PDF

Performance Enhancement of Gas-Liquid Mixed Plasma Discharge System using High Speed Agitation (고속 교반을 이용한 기-액 혼합 플라즈마방전 시스템의 성능 향상)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.26 no.6
    • /
    • pp.711-717
    • /
    • 2017
  • Dielectric Barrier Discharge (DBD) plasma is a new technique for use in environmental pollutant degradation, which is characterized by the production of hydroxyl radicals as the primary degradation species. Due to the short lifetime of the chemically active species generated during the plasma reaction, the dissolution of the plasma gas has a significant effect on the reaction performance. The plasma reaction performance can be enhanced by combining the basic plasma reactor with a homogenizer system in which the bubbles are destroyed and turned into micro-bubbles. For this purpose, the improvement of the dissolution of plasma gas was evaluated by measuring the RNO (N-dimethyl-4-nitrosoaniline, an indicator of the generation of OH radicals). Experiments were conducted to evaluate the effects of the diameter, rotation speed, and height of the homogenizer, pore size, and number of the diffuser and the applied voltage on the plasma reaction. The results showed that the RNO removal efficiency of the plasma reactor combined with a homogenizer is two times higher than that of the conventional one. The optimum rotor size and rotation speed of the homogenizer were 15.1 mm, and 19,700 rpm, respectively. Except for the lowest pore size distribution of $10-16{\mu}m$, the pore size of the diffuser showed little effect on RNO removal.