• Title/Summary/Keyword: Planting landscape

Search Result 673, Processing Time 0.02 seconds

The Analysis of Optimal Site Condition for Photovoltaic System and Green Roof Planting through Sunlight Component Simulation of Rooftop Area (옥상공간의 태양광 자원 해석을 통한 PV 시스템 및 녹화식재에 대한 적지조건분석)

  • Kim, Tae Han;Park, Dae Keun;Kwan, Ji Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.4
    • /
    • pp.27-40
    • /
    • 2013
  • These day morden cities have serious climatic problems due to enviornmental load caused by excessive development of urbanization. As technological improvement to answer to various ecological disasters and climate changes are also called on the field of construction, inter-disciplinary studies linked to the estabilishment of sustainable energy generation systems and enviornmental control is needed in a consilient point of view. This study aims to analyse optimal site conditions for photovoltaic system and green roof planting through solar radiation simulation in a integrated perspective. In so doing, it seeks to proffer basic study for developing a sound use of roof area that is sustainable in environmental and resources aspects. A computer simulation showed that, in the case of total seasonal solar radiation, summer season resulted 312.5kWh in 35% of total annual solar radiation. This season indicated the lowest radiation rate of the year for direct sunlight in 45.8% of total seasonal solar radiation. Due to such solar radiation simulation, at the largest optimal planting area, Glechoma hederacea var. longituba secured $719.16m^2$ of gross roof area.

A Preliminary Study on Assessment of Urban Parks and Green Zones of Ecological Attributes and Responsiveness to Climate Change (도시공원녹지의 생태성 및 기후변화 대응성 평가 기초 연구)

  • Sung, Hyun-Chan;Hwang, So-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.3
    • /
    • pp.107-117
    • /
    • 2013
  • Problems in regard of ecological stability of urban ecosystem ensue from climate change and urbanization. Particularly, urban ecological conditions are deteriorating both quantitatively and qualitatively to a great extent. The present study aims to assess the current condition of selected sites (i. e. urban green zones and parks) in terms of preset assessment components; to find out problems and relevant solutions to improve the quality and quantity of parks and green zones; and ultimately to suggest some measures applicable to coping with climate change as well as to securing the ecological attributes of urban green zones and parks. According to the findings of this study, from quantitative perspectives, ecological attributes and responsiveness to climate change are high on account of the large natural-soil area(80%). By contrast, from qualitative perspectives including the planting structure (1 layer: 47%), the percentage of bush area(17%), the connectivity with surrounding green zones (independent types: 44%), the wind paths considered (5.6%), the tree species with high carbon absorption rates (20%), water cycles (17%), energy (8%) and carbon storage capacities(61%), ecological attributes and responsiveness to climate change were found very low. These findings suggest that the ecological values of urban parks and green zones should be improved in the future by conserving their original forms, securing natural-soil grounds and employing multi-layered planting structures and water bodies, and that responsiveness to climate change should be enhanced by planting tree species with high carbon storage capacities and obtaining detention ponds. In sum, robust efforts should be exerted in the initial planning stages, and sustained, to apply the methodology of green-zone development along with securing ecological attributes and responsiveness to climate change.

Studies on the Tree Growth and Soil Environmental Characteristics in the Planting Zone on the Back Slope of Dam (댐체 비탈면 녹화지역의 수목 생장 및 토양환경 특성에 관한 연구)

  • Bahn, Gwon-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.3
    • /
    • pp.85-98
    • /
    • 2021
  • In this study, the characteristics of tree growth and soil environment were analyzed at 5 sites that had been planted on the back slope of dam for more than 15 years in Korea. First, as a result of investigating the growth of 15 trees planted on the back slope of the dam, the average height was 10.6m, diameter at roots was 27.3cm, and DBH was 22.9cm, showing good growth status of most of the trees. In particular, the growth levels of pine, hackberry, and oak were similar or better than those of general forests and artificial ground. As a result of excavating and investigating the roots of trees, horizontal roots grew well in the left and right directions of the back slope of the dam, and the growth of vertical roots was insufficient. Currently, the roots of trees do not directly affect dam safety, but they may continue to grow in the long term and interfere with dam management. Second, the physicochemical characteristics of the soil on the back slope of dam were generally above the intermediate level in terms of landscape design standards, and were similar to those of the domestic forest soil. Therefore, although it was judged to be suitable for plant growth, isolation of the site, soil acidification, and nutrient imbalance may affect tree growth and forest health in the long term. Through this study, it was possible to confirm the potential and applicability of planting area on the back slope of dam as an ecological base. Continuous monitoring is required for safety management and ecological value of dams in the future, and through this, it will be possible to secure the feasibility of planting trees on the slopes of new or existing dams and improving management.

Analysis of Temperature Influence Experiment on Green Spaces in Campus (캠퍼스 내 녹지공간의 온도분석 및 온도영향요인 규명 실험)

  • Kim, Jaekyoung;Kim, Wonhee;Kim, Eunil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.511-520
    • /
    • 2020
  • Owing to global warming, heat waves have become stronger in the summer, and research on improving the thermal environment of green spaces, such as urban parks, is being conducted. On the other hand, studies on improving the urban thermal environment, which is changing due to the greening pattern and the intensity of the wind, are still insufficient. This study analyzed the temperature of the green spaces on campus to understand the factors affecting the temperature changes. After investigating the covering condition and planting form of the site, factors, such as temperature, humidity, wind direction, wind speed, and illuminance, were measured. The most influential factors on the temperature distribution are evapotranspiration and wind - induced heat transfer. The other major factors affecting the temperature change were the type of cover, wind velocity/wind direction, type of planting, shade / solar irradiance. In the type of cover, the plant was classified as low temperature, and the asphalt pavement was classified as high temperature. In wind speed, instantaneous temperature was reduced by 1.2 ℃ in southern wind, 0.7 ℃ in the westerly wind, 0.4 ℃ in the north wind and 0.5 ℃ in the east wind when a wind of 3.5m/s or more was blown.

A Study on the Method of Color-centered Planting Design in the English Gardens - Focusing on Munstead Wood, Sissinghurst, Great Dixter, Hidcote Manner - (영국정원에서의 색상중심의 재식설계방법 - 먼스태드 우드, 시싱허스트, 그레이트 딕스터, 히드콧 매너를 중심으로 -)

  • Park, Eun-Yeong
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.28 no.1
    • /
    • pp.102-112
    • /
    • 2010
  • By understanding physiological characters of plants and the environment, plant design should decide the relationship with other plants from the designer's curiosity of the plant's color, texture, form and other aspects. There are a traditional tendency that many designers put the plant's color ahead of other aspects. This study explores 4 gardens of Gertrude Jekyll's Munstead Wood, Vita Sackvill-West's Sissinghurst, Christopher Lloyd's Grest Dixter and Lawrence Johnston's Hidcote Manner. The flower border of Munstead is started with light grey and blue at the edge and it gets stronger colors like red and orange as the line comes to the middle. It is noticeable that white an blue colors were used unlike before. Sissinghurst made use of purple color which was very seldom used before and Dixter added orange to magenta color that was already there, giving a strong visual effect and through juxtaposition it could realize the wanted effect. A strong red border line was created in Hidcote Manner. Above mentioned designers arranged various colors so that visitors can experience different spacial senses according to observer's direction. In the cognitive space the main color and the secondary color arranged leading to the fact that the observer recognizes it as a whole. In plant design time means seasonal performance which influences the main color arrangement like gradation or contrast. Moreover, space determines the color's zone when it comes to plant design.

Effects of Several Soil Medias on the Plant Growth in Artificial Planting Ground (인공지반용 식재용토의 배합이 목본식물의 생장에 미치는 영향)

  • Lee, Eun Yeob;Moon, Seok Ki
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.3
    • /
    • pp.18-24
    • /
    • 1999
  • This study was aimed to develope appropriate soil media for the growth of Rhododendron hybrid $J_{ASANHONG}$ on the artificial ground five types of soil media was tested such as "sandy loam-general soil (T1)", "vermiculite-artificial soil (T5)", "sandy loam 50% + vermiculite 30% + sand 20% (improved of soil 2-T2)", "sandy loam 50% + carbonized rice hust 30% + sand 20% (improved of soil 3-T3)", "sandy loam 50% + humus sawdust 30% + sand 20% (improved of soil 4-T4)". The result of the research are as follows. 1. Among the type of soil media, the sandy loam(T1) soil type gave the worst effects on growth of above ground parts(height, No. of leaf, width of leaf, No. of flowering, dry weight of upper parts) and under ground parts(dry weight of roots). 2. Vermiculite(T5) showed the highest root growth(dry weight of roots). it seemed to be caused high saturated hydraulic conductivity and porosity. As a result, there is much available space for enabling the root spreads. 3. "sandy loam 50% + vermiculite 30% + sand 20%(improved of soil 2-T2)", "sandy loam 50% + carbonized rice hust 30% + sand 20%(improved of soil 3-T3)" showed good effects on growth of above ground parts and under ground parts compared with sandy 10am(T1) 4. "sandy loam 50% + humus sawdust 30% + sand 20% + (improved of soil 4-T4)" showed the highest effects on growth of above ground parts.

  • PDF

Improvement of Soil Quality for Artificial Planting's Ground with Large Integrated Underground Parking Lot in Apartment Complex (대규모 지하통합주차장을 갖는 공동주택 인공식재지반 토양품질 개선방안)

  • Kang, Myung-Soo;Lee, Eun-Yeob;Lee, Jung-Min;Kim, Mi-Na
    • Land and Housing Review
    • /
    • v.6 no.1
    • /
    • pp.31-39
    • /
    • 2015
  • Most landscape areas in apartment complex have been changing. Increasing the area of underground parking lots have an effect on apartment's circumstance. Natural ground was decreased so that the most space in apartment complex were converted into an artificial ground. To suggest the soil quality management, this study examined the actual situation about the soil quality of planting ground such as the quality standard as artificial soil, the difference of natural ground, and the difference of soil quality according to the work classification. As a result, the soil quality of the apartment complex with a large underground parking lot had low quality of soil. Soil physical properties were relatively fine but soil chemical properties needed the quality control. The soil quality of natural ground and artificial ground was not statistically significant and the soil quality by the work classification also had no statistical significance. Therefore, we established improvements about standards of the chemical properties for quality management, the soil quality in the natural ground and applying the equivalent standard according to the work classification.

Revitalization of Elementary School Plots, as Small Public Parks -A Case Study of School Subject Parks in Seoul - (소공원으로서 초등학교부지의 활용방안 - 서울시 학교공원화사업 대상지를 중심으로 -)

  • Nam, Mi-A;Lee, Eun-Heui
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.1
    • /
    • pp.14-30
    • /
    • 2006
  • It is difficult to secure public lots in the downtown area, school lots can be made the best use of important source to increase the area of green land in the city. The tree-planting campaign for schools has been in force since 1999 by the city of Seoul and at present; it is currently established as the plan of school parks. Thereupon, the purpose of this study is to present some ways to revitalize elementary schools to be used as vest pocket parks through the research of elementary schools, which are subject to the plan of school parks in Seoul. The results of this study are as below : The subjects to revitalize school parks as vest pocket parks are as follows. First, the land has to be utilized for security of space. Second, in addition to the front and back gate, another passage to the park has to be set up for easy access. Third, the fence has to be formed as a hedge used outside the park. Fourth, selecting plants, species of trees suitable for the landscape of school and taking into consideration the aspect of ecology. Finally, it is urgent to enact socially and economically proper standard of law by the new standards of area for school landscape considering not only the building law and regulations of general landscape, but also specific characteristics of school landscape.

Temperature Reduction Effect According to Light Transmittance of Urban Street Trees - Focused on Seocho-gu in Seoul - (도시 내 가로수의 광선투과량에 따른 온도저감 효과 - 서울시 서초구를 중심으로 -)

  • Kim, Eun-Bum;Kim, Nam-Choon;Shin, Ji-Hoon;Song, Won-Kyeong;Kim, Do-Hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.3
    • /
    • pp.45-54
    • /
    • 2017
  • With rapid urbanization and reckless urban development in the 21st century, the urban environment has gradually gotten worse, and urban heat island effect has been dramatically intensified. Thus, the importance of street greenery that can mitigate the urban heat island effect has further been highlighted. In this regard, this study was aimed at selecting suitable plant species for street greenery to reduce the urban heat island effect. Towards this end, five roads located in Seocho-gu, Seoul were selected as study sites, and plant species composition and difference of surface temperature were compared and analyzed in relation to the light transmittance. The street with the greatest temperature difference is Bangbae-ro(Platanus occidentalis). On the other hand, the road with the lowest temperature difference is Nambusunhwan-doro(Metasequoia Glyptostroboides). The effect of temperature reduction was found to be associated with light transmittance.Bangbae-ro(Platanus occidentalis) with the lowest light transmittance showed the highest temperature difference and Nambusunhwan-doro(Metasequoia Glyptostroboides) with the highest light transmittance showed the lowest temperature difference. It is analyzed that there are most differences in temperature when the amount of lights coming in between the crown is small. The temperature reduction effect can be obtained by planting deciduous broad-leaved trees. Also species with dense crown and broad width of crown will be able to maximize the effect of temperature reduction. In future studies, it will be necessary to expand the other species of trees in the street, and analyze the germicidal trees and shrubs as well as the differences in the packaging materials.

Phytoremediation of Heavy-Metal-Contaminated Soil in a Reclaimed Dredging Area Using Alnus Species

  • Lee, Deok-Beom;Nam, Woong;Kwak, Young-Se;Cho, Nam-Hoon;Lee, Sang-Suk
    • Journal of Ecology and Environment
    • /
    • v.32 no.4
    • /
    • pp.267-275
    • /
    • 2009
  • To investigate the possible applications of plants to remediate heavy-metal-contaminated soil, a pilot experiment was performed for four years in a reclaimed dredging area using two Alnus species, i.e., Alnus firma and Alnus hirsuta. In a comparison of phytomass of the two species at two different planting densities, the phytomass of Alnus planted at low density was twice as high as that of Alnus planted at high density after four years. The Alnus species showed active acclimation to the heavy-metal-contaminated soil in a reclaimed dredging area. A. hirsuta showed greater accumulation of phytomass than A. firma, indicating that it is the better candidate for the phytoremediation of heavy-metal-contaminated soils. In the pilot system, Alnus plants took metals up from the soil in the following order; Pb > Zn > Cu > Cr > As > Cd. Uptake rates of heavy metals per individual phytomass was higher for Alnus spp. planted at low density than those planted at high density in the pilot system. Low plant density resulted in higher heavy metal uptake per plant, but the total heavy metal concentration was not different for plants planted at low and high density, suggesting that the plant density effect might not be important with regard to total uptake by plants. The quantity of leached heavy metals below ground was far in excess of that taken up by plants, indicating that an alternative measurement is required for the removal of heavy metals that have leached into ground water and deeper soil. We conclude that Alnus species are potential candidates for phytoremediation of heavy-metal- contaminated surface soil in a reclaimed dredging area.