• Title/Summary/Keyword: Planting density

Search Result 530, Processing Time 0.027 seconds

GIS application on weed control of Eleocharis kuroguwai in lowland rice field in Korea (GIS를 이용한 논 잡초 올방개의 방제연구)

  • ;;S.P.Kam
    • Spatial Information Research
    • /
    • v.3 no.1
    • /
    • pp.47-53
    • /
    • 1995
  • The weed survey in lowland rice fields through Korea was conducted in 1992 to determine a change of the weed communities based on different regions, soil types, planting methods, and cultural practices. GIS was applied to identify a spatial analysis of predominant weed species in specific region. On behalf of vegetatine analysis such as absolute and relative density, absolute and relative frequency, importance value, and summed dominance ratio(SDR), there was highly dominant with a perennial weed species, Eleocharis kuroguwai Ohwi over whole country. However, in particular it was most predominant at southem area of Gyunggi province in Korea. Thus, rice farmers of this area have to introduce a specific comperhensive control strategy against this predominant weed species.

  • PDF

Effect of Cultivation under Forest on thc Growth and Quality of Ginseng (Panax ginseng C.A. Meyer) (인삼의 임간재배가 생육 및 품질에 미치는 영향)

  • Nam, Gi-Yeol;Son, Seok-Ryong;Bae, Hyo-Won
    • Journal of Ginseng Research
    • /
    • v.4 no.1
    • /
    • pp.16-30
    • /
    • 1980
  • In order to increase the production of ginseng, a cultural experiment was carried out under different types of natural forest condition. Seedlings were transplanted with three spacing (70,90 and plants per 1.62m2) under the broad leaved, needle and mixed forest. The obtained results are as follows. 1 Growth of aerial part of ginseng plant. 1) Vegetative growth under forest condition of very poor as compared with ordinary cultivation, but there was no significant in number of leaf and teasel. 2) Stem diameter and stem length under the different forest types were a little difference. However petiole length and number of leafet showed an increasing trend in broad leaved forest as compared with other forest types. 3) The withering date of aerial part of ginseng plant in the needle forest was later than of others. 2. Fresh weight of ginseng root per plant was decreasing in the order of broad leaved forest, needle and mixed forest, needle and sized forest respectively. However the root weight was much smaller than that of ordinary cultivated one. 3. No big difference was observed in the growth of both aerial and root among the planting density 4. Nitrogen content in ginseng root under forest was lower, but calcium content In root was higher than that of ordinary one. 5. Fat and fiber content of ginseng root under forest showed higher than that of ordinary one. 6. The saponin content of ginseng root grown under forest condition was higher than that of ordinary ginseng root. According to high performance liquid chromatogram of saponin, only difference from ordinary cultivated ginseng root was that ginsenoside Re showed higher peak than ginsenoside Rg1.

  • PDF

The Effects of Soil Particle Composition on Soil Physical Properties and the Growth of Woody Plants (토양의 입도조성이 토양의 물리성 및 목본식물의 생장에 미치는 영향)

  • 이소정;김민수
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.25 no.2
    • /
    • pp.54-61
    • /
    • 1997
  • This study has conducted to analyze the crelationship among soil properties and to investigate how they affect soil physical characteristics and plant growth. The experiment of woody plant growth was conducted as follows : Type I was the original soil. Type II, the soil particles smaller than 20${\mu}{\textrm}{m}$ was removed from the original soil. Type III, the soil particles is smaller than 75${\mu}{\textrm}{m}$ was removed from original soil. Wisteria floribunda A.P.DC and Celtis sinensisi Pers. were used for plant growth measurement. 1. Soil type II. the closest to Fuller's curved line, showed high dry bulk density and low in soil pores and saturated hydraulic conductivities. This created poor soil aeration and limited space for the root to growth. When the root did not have sufficient space to grow, there was a lot of physical stress, which hindered the root growth. 2. Soil typeIII was high saturated hydraulic conductivity and a lot of soil pores larger than 10 ${\mu}{\textrm}{m}$. As a result, there were more available spaces for root to spread. It was considered that there was less physical stress for root growth. Therefore, soil typeIII showed significantly greater root growth. 3. Because soil type III has less small particles and saturated hydraulic conductivity was high, and water infiltrates rapidly into the underground when there was rainfall or irrigation. The soil typeIII becomes much stronger soil mechanically due to the less small particles. Therefore, soil typeIII was a suitable material for applying on planting sites where soil compaction is expected.

  • PDF

Growth and Seed Composition of Protein, Oil and Fatty Acid as Affected by Polyethylene Film Mulching in Peanut (PE 필름 피복 재배가 땅콩 생육 및 종실의 단백질, 지방함량과 지방산 조성에 미치는 영향)

  • 이성우;김석동;박장환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.6
    • /
    • pp.647-651
    • /
    • 1997
  • Flowering date of peanut variety, Daekwangtangkong and Daepungtangkong in non-mulching culture was delayed each 9 and 6 days. Seedling ratio was decreased each 3.7%, 16% and branch length was decreased each 24%, 17% more than polyethylene film mulching culture. But the number of branch in non-mulching culture was not reduced. No. of mature pods, kernel/pod ratio, 100-seed weight and kernel weight per plant was reduced extremely in non-mulching culture, nevertheless the kernel yield per 1 ha of Daekwangtangkong in non-mulching culture was similar to that of polyethylene film mulching culture but yield of Daepungtangkong was 26% higher than that of polyethylene film mulching culture owing to planting density. Protein content of Daekwangtangkong in non-mulching culture was increased 4% but that of Daepungtangkong was decreased 3% and oil content of both variety was decreased 7%, 9% respectively comparing to polyethylene film mulching culture. Oleic acid was increased but linoleic acid was decreased and O/L ratio was decreased in non-mulching culture.

  • PDF

Management of Charcoal Rot of Sesame by Seed Soaking in Medicinal Plant Extracts and Hot Water

  • Ahmed, Hoda A.M.;Abdel-Razik, A.A.;Hassan, M.H.A.;Khaled, S.A.
    • The Plant Pathology Journal
    • /
    • v.26 no.4
    • /
    • pp.372-379
    • /
    • 2010
  • Macrophomina phaseolina causing charcoal rot was isolated from sesame seeds (cvs. Giza 32 and Shandawel-3) collected from different localities of Assiut, Sohage and El-Minia Governorates. The fungus was found in the highest frequently in samples collected from Assiut Governorate followed by Sohag and finally EL Minia Governorate. The obtained isolates were different in their virulence on the tested sesame cvs. Also, they differed in their growth nature including colony color and sclerotial production. The color of colonies of the pathogen seem to be correlated with density of sclerotial formation. Aqueous extracts of Majorna, Wild chamomile, Geranium oil and Nees plants were highly toxic to tested isolates of M. phaseolina, in vitro. On the other hand the rest of the tested aqueous extracts had no effect. Under greenhouse conditions in 2005 and 2006 seasons, soaking seeds of sesame before sowing in aqueous extracts of Eucalyptus, Nerium, Ocimum and Roesmary plants decreased the disease incidence. Aqueous extracts of Eucalyptus and Ocimum were the most effective treatment. Dipping sesame seeds in hot water at $60^{\circ}C$ for 5 minutes increased seed germination of Giza 32 and Shandawel-3 cvs. followed by $55^{\circ}C$, $50^{\circ}C$ and $45^{\circ}C$, while $40^{\circ}C$ treatment resulted the lowest seed germination rate. Dipping sesame seeds in hot water at different temperature before planting decreased seed, seedling and charcoal rots. Soaking seeds in hot water at $60^{\circ}C$ increased greatly plant height and decreased seed, seedling rot and charcoal rot followed by $55^{\circ}C$ and $50^{\circ}C$, under greenhouse condition.

Seasonal changes in soil acidity and related properties in ginseng artificial bed soils under a plastic shade

  • You, Jiangfeng;Liu, Xing;Zhang, Bo;Xie, Zhongkai;Hou, Zhiguang;Yang, Zhenming
    • Journal of Ginseng Research
    • /
    • v.39 no.1
    • /
    • pp.81-88
    • /
    • 2015
  • Background: In Changbai Mountains, Panax ginseng (ginseng) was cultivated in a mixture of the humus and albic horizons of albic luvisol in a raised garden with plastic shade. This study aimed to evaluate the impact of ginseng planting on soil characteristics. Methods: The mixed-bed soils were seasonally collected at intervals of 0-5 cm, 5-10 cm, and 10-15 cm for different-aged ginsengs. Soil physico-chemical characteristics were studied using general methods. Aluminum was extracted from the soil solids with $NH_4Cl $(exchangeable Al) and Na-pyrophosphate (organic Al) and was measured with an atomic absorption spectrophotometer. Results: A remarkable decrease in the pH, concentrations of exchangeable calcium, $NH_4^+$, total organic carbon (TOC), and organic Al, as well as a pronounced increase in the bulk density were observed in the different-aged ginseng soils from one spring to the next. The decrease in pH in the ginseng soils was positively correlated with the $NH_4^+$ (r=0.463, p<0.01), exchangeable calcium (r=0.325, p<0.01) and TOC (r= 0.292, p < 0.05) concentrations. The $NO_3^-$ showed remarkable surface accumulation (0-5 cm) in the summer and even more in the autumn but declined considerably the next spring. The exchangeable Al fluctuated from $0.10mg\;g^{-1}$ to $0.50mg\;g^{-1}$ for dry soils, which was positively correlated with the $NO_3^-$ (r=0.401, p < 0.01) and negatively correlated with the TOC (r=-0.329, p < 0.05). The Al saturation varied from 10% to 41% and was higher in the summer and autumn, especially in the 0-5 cmand 5-10 cm layers. Conclusion: Taken together, our study revealed a seasonal shift in soil characteristics in ginseng beds with plastic shade.

A Study on Biological Control using the 'Natural Enemy in First (NEF)' Technology in Tomato Greenhouses (시설 토마토에서 'Natural Enemy in First (NEF)' 기술의 생물적 방제 연구)

  • Ham, Eun Hye;Jun, Hye Jeong;Lee, Jun Seok;Lim, Un Taek;Park, Jong Kyun
    • Korean journal of applied entomology
    • /
    • v.59 no.4
    • /
    • pp.407-408
    • /
    • 2020
  • We studied the efficacy of the 'Natural Enemy in First (NEF)' technology in controlling thrips and aphids in tomato greenhouses, relative to the natural enemy and conventional chemical treatments. This technology combined the use of natural enemies of the pests (parasites/predators) with their food sources/habitats, and the treatment commenced at the time of planting. The 'NEF' technology, for the control of thrips, had an efficacy 32% higher than the natural enemy treatment, and 82% higher than the conventional chemical treatment. The average population density of aphids after the treatment was not significantly different among all treatments.

Effect of Urban Parks on Carbon and PM2.5 Reduction in Gangneung

  • Choi, Seong-Gyeong;Jo, Hyun-Kil
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.1
    • /
    • pp.64-73
    • /
    • 2022
  • Increasing carbon and PM2.5 concentrations have been emerging as serious environmental issues worldwide. The purpose of this study was to quantify carbon and PM2.5 reduction by urban parks in Gangneung, Korea. A total of 35 parks were sampled by applying a random sampling method to survey tree planting structures and the areal distribution of land cover types of urban parks. These survey data and the Green Evaluation Technique (GET) computer program were used to estimate carbon and PM2.5 reduction by trees. Mean tree density and cover in the study parks were 3.5±0.2 tree/100 m2 and 44.5±3.0%, respectively. Annual carbon uptake and PM2.5 deposition per unit area by trees averaged 2.8±0.2 t/ha/yr and 30.2±2.8 kg/ha/yr. Gangneung's urban parks annually offset the carbon emissions by 3.4% and the PM2.5 emissions by 3.5%. Thus, urban parks played a significant role in reducing atmospheric carbon and PM2.5 concentrations. Total annual carbon uptake and PM2.5 deposition of urban parks in Gangneung were about 1,338.2 t/yr and 14,433.2 kg/yr. This study is expected to contribute to raising awareness of the role and importance of urban parks regarding carbon and PM2.5 reduction.

Alteration of Vegetarltive and Agronomic Attributes of Soybeans by Terminal Bud Removal (적심에 의한 콩의 영양생장과 특성의 변화)

  • Hong, Eun-Hi;Park, Eui-Ho;Chin, Moon-Sup
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.4
    • /
    • pp.431-435
    • /
    • 1987
  • Terminal bud removal has been thought as a useful practical management of soybean cultivation in Korea, and such cultivating method has been recommended till recent times. Many experiments about the effect of bud removal have been made, but it is not certain yet. This study was conducted to determine if source potential and seed yield would be affected by bud removal in 4 determinate soybean varieties. Terminal bud was removed by hand at the 5 trifoliolate stage of growth. Data were collected on leaf area and leaf dry matter weight from 58 to 101 DAP by nearly every 10 days and some agronomic characteristics and seed yield after maturity. Removing the apical bud did not increased leaf area and leaf dry matter. Number of modes and pods per a plant was increased by bud removal, but number of seeds per a pod was decreased, and seed yield was unchanged by such offsets. From the data, we concluded the source potential of soybean plants was not increased by terminal bud removal under the planting density, 22,000 pit/l0a, however it would be a useful way to reduce the lodging or over-growth.

  • PDF

Monitoring on Bolboschoenus planiculmis Restoration in Nakdong River Estuary: Implications for Wetland Restoration Using Shoot Transplantation (낙동강하구 새섬매자기(Bolboschoenus planiculmis) 복원 모니터링: 식물체(shoot) 식재를 이용한 습지복원)

  • Gu-Yeon Kim;Hee Sun Park;Hwa Young Kim;Ji-Young Lee
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.4
    • /
    • pp.406-414
    • /
    • 2022
  • Bolboschoenus planiculmis has been acknowledged as a key species in whooper swans (Cygnus cygnus) habitat by providing food for this migratory waterfowl. B. planiculmis wetlands are being degraded by water shortages and salinization caused by anthropogenic activities and climate changes. In 2004, the distribution of B. planiculmis in the tidal flats of the Nakdong Estuary was 2,475,568 m2, and in 2021, the distribution area was 798,731 m2, which decreased by 32.3%. In order to restore the degraded B. planiculmis wetlands, shoot transplantation and seed sowing were tentatively used in three places with different salinity and water levels. The average density per unit area in September at the optimal growth period after planting were A (fresh water level 50 cm) 58±15.65 m-2, B (brackish water level 0~5 cm) 188±63.83 m-2, C (brackish water level 0 cm or less) 188±45.13 m-2. The tubers were observed as A 0 g dw m-2, B 25.32±2.94 g dw m-2, and C 13.39±0.91 g dw m-2. Tubers were distributed in the soil, with only 3.0% at the 10~20 cm depth but 97.0% at the 0~10 cm depth. In contrast, the germination rate of B. planiculmis seeds was observed to be 0%. Results of this study provide technical support for the restoration of B. planiculmis wetland and the improvement in the quality of whooper swans habitat.