• 제목/요약/키워드: Planting Machine

Search Result 37, Processing Time 0.025 seconds

Comparison of Yield Potential According to Planting Density for Use of Small Potatoes in Greenhouse Cultivation

  • Yoon-Ho Song;Yoon-Sang Jo;A-Reum Park;Gyu-Seuk Han;Jin-Hee Meng;Geon-Su Ha
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.43-43
    • /
    • 2022
  • This study was carried out to investigate planting density suitable for technology that can produce a lot of small seed potatoes to machine sowing, the test material was made of less than 3 g of seed potatoes, and planting density was 75×10, 75×15, 75×20cm. the results of the test study were as follows, number of potatoes per 10a and number of potatoes under 50 g were the most 75×10cm in 2sowing methods. In view of these results, planting density suitable for technology that can produce a lot of small seed potatoes to machine sowing is judged 75×10cm in 2sowing methods. In order for this study to be applied in the agricultural field, cultivation management such as adequate water supply will be required.

  • PDF

Development of Pottery Planting Equipment for the Restoration of North Korean Forest (북한산림복구용 용기묘 식재기 개발)

  • Choi, Jong-O
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.1
    • /
    • pp.61-68
    • /
    • 2023
  • In North Korea, the production of courage tombs continues, and it is known that the activity rate is higher than that of old tombs. However, pot seedling are planted using hoes and shovels used for planting old tombs with exposed roots and low activity rates. This is believed to result in excessive force when stepping on the container grave with a hoe in the planting process, resulting in the collapse of the container grave or the waste of labor due to the creation of unnecessary planting holes. Therefore, when planting courage graves at North Korean afforestation sites, it is necessary to improve the work of making planting holes using general hoes in a way that improves labor productivity in a more efficient manner. As part of inter-Korean technical cooperation to improve the North Korean afforestation method, this study was conducted with the aim of developing efficient container seedlings and using them for North Korean forest restoration projects. It is believed that developing planting equipment exclusively for container graves for forest restoration in North Korea in South Korea and providing equipment and production technology to North Korea can contribute to the development of forest restoration technology in North Korea. If the Yonggeomyo Development Planting Equipment is provided to North Korea, it will be a realistic inter-Korean forest cooperation project to avoid international sanctions by recognizing the excellence of the development products by directly using its own materials through technical cooperation.

Optimum Planting Density in Low Fertilizing Culture of Machine Transplanting in Rice (벼 기계이앙 소비재배시 적정 재식밀도 구명)

  • Choi Weon-Young;Moon Sang-Hoon;Park Hong-Kyu;Choi Min-Gyu;Kim Sang-Su;Kim Chung-Kon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.379-385
    • /
    • 2006
  • This experiment was carried out to investigate the optimum planting density in low fertilizing cultivation of machine transplanting in rice field of Honam Agricultural Research Institute, NICS for $2004{\sim}2005$. Sobibyeo which belongs to medium maturing variety and Nampyeongbyeo which belongs to medium-late maturing variety were transplanted on May 30. In this experiment, there was no significant difference in heading date between planting density and nitrogen fertilization rate, and heading dates were August 8 in Sobibyeo, and August 14 in Nampyeongbyeo respectively. In relation to lodging character, lodging Index was high where the nitrogen fertilization rate and planting density were high. As planting density increases, panicle number per $m^{2}$ increased irrespective of nitrogen fertilization rate. When nitrogen was 6 kg/10a, rice yield of Sobibyeo was more where planting density was 90 hill per $3.3m^{2}$, and that of Nampyeongbyeo was more where planting density was 80 hill per $3.3m^{2}$. When nitrogen was 9 kg/10a, rice yield of Sobibyeo was more where planting density was 100 hill per $3.3m^{2}$, and that of Nampyeongbyeo was more where planting density was 110 hill per $3.3m^{2}$. Head rice rate of brown rice was higher when planting density increased, and was higher at 6 kg/10a nitrogen rate than 9 kg/10a nitrogen rate in all varieties.

Development of a Precision Seed Metering Device for Direct Seeding of Rice (벼 직파용 정밀 배종장치 개발)

  • Yoo S. N.;Choi Y. S.;Suh S. R.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.5 s.112
    • /
    • pp.261-267
    • /
    • 2005
  • In order to save labor and cost, direct seeding has been considered as an important alternative to the machine transplanting in rice cultivation. As current seeders for direct seeding of rice seeds drill irregular amount of seeds under various operating conditions, conventional drilling should be turned to precision planting which enables accurate placement of proper amount of rice seeds at equal intervals within rows. In this study, design, construction and performance evaluation of a precision seed metering device for planting of rice seeds were carried out. As prototype, the conventional roller type seed metering device was modified for planting: increasing diameter of metering roller, setting 2 or 4 seed cells on metering roller, adding seed discharging lid and its driving cam mechanism. Through performance tests for prototype and the current seed metering device, number of seeds in a hill, planting space and its error ratio, coefficient of variation of planting space (planting accuracy), and seeding length of $90\%$ of seeds in a hill divided by planting space (planting precision) at setting planting spaces of 15, and 20cm, seeding heights of 10, and 20cm, and seeding speeds of 0.1, 0.2, and 0.5m/s were investigated. Prototype showed better seed planting performance than the current seed metering devices. When setting planting space of 15 cm and seeding height of 10cm, prototype with 2 seed cells showed that variations of planting space and seeding lengths of $90\%$ of seeds in a hill at up to seeding speed of 0.5m/s were within 0.9cm, and 3.6cm, respectively.

DEVELOPMENT OF A GARLIC CLOVE PLANTER

  • Park, W.K.;Kim, Y.K.;Choi, D.K.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.438-445
    • /
    • 2000
  • Positioning garlic cloves in upright standing in garlic field has been regarded as a very important job because it affects clove rooting, growing and, eventually, quality and yield in garlic production, Because of the geometrical uniqueness and irregularity of garlic cloves in shape, the planting operation has been conducted by manual work that needs a tremendous human labors and increases garlic production cost. The overall objective of this research was to develop garlic planting machine through investigating physical properties of garlic and designing clove upright positioning device after figuring out the factors affecting metering device and upright clove positioning mechanism. With the outcomes of the metering and posture positioning experiment, a garlic clove planter having twelve planting rows was developed for 37kW type tractor and feasibility test was carried out in the field. And, According to the performance test and cost analysis, the planter could accomplish planting operation of one hectare plot in 6.3 hours giving 48 times better efficiency, 6.3hrs/ha, and 74.2% of production cost reduction effect, 1,092,546won/ha, than the manual works of 299hrs/ha and 282,258won/ha. And, break-even point ofthe planter was calculated as of 2.71 hectares.

  • PDF

Analysis of the PTO Torque of a Transplanter by Planting Condition

  • Kim, Wan Soo;Chung, Sun Ok;Choi, Chang Hyun;Cho, Jong Seung;Choi, Dug Soon;Kim, Young Joo;Lee, Sang Dae;Hong, Soon Jung;Kim, Yong Joo;Koo, Seung Mo
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.313-318
    • /
    • 2016
  • Purpose: This study measured and analyzed the PTO (power take off) torque of a transplanter according to the planting conditions during field operation. Methods: A torque measurement system was constructed with torque sensors to measure the torque of a PTO shaft, a measurement device to acquire sensor signals, and a power controller to provide power for a laptop computer. The field operation was conducted at four planting distances (26, 35, 43, and 80 cm) and two planting depths using the transplanter on a field with similar soil conditions. One-way ANOVA with planting distance and Duncan's multiple range test at a significance level of 0.05 were used to analyze the PTO torque. The torque ratio was calculated based on the minimum torque using the average PTO torque measured under each planting condition. Results: The average torques on the PTO shaft for planting distances of 26, 35, 43, and 80 cm at a low planting depth were 11.05, 9.07, 7.04, and 3.75 Nm, respectively; the same for planting distances of 26, 35, 43, and 80 cm at a middle planting depth were 12.20, 9.86, 7.94, and 4.32 Nm, respectively. When the planting distance decreased by 43, 35, and 26 cm, the torque ratio at a low planting depth increased by 88, 142, and 195%, respectively. When the planting distance decreased by 43, 35, and 26 cm, the torque ratio at the middle planting depth increased by 84, 128, and 182%, respectively. Conclusions: PTO torque fluctuated by planting distance and depth. Moreover, the PTO torque increased for short planting distances. Therefore, farmers should determine the planting conditions of the transplanter by considering the load and durability of the machine. The results of this study provide useful information pertaining to the optimum PTO design of the transplanter considering the field load.

Development of a Precision Seeder for Direct Seeding of Rice on Dry Paddy (정밀 파종 벼 건답직파기 개발)

  • Yoo, S.N.;Kim, D.H.;Choi, Y.S.;Suh, S.R.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.2
    • /
    • pp.83-93
    • /
    • 2008
  • In order to save labor and cost, direct seeding has been considered as an important alternative to the machine transplanting in rice cultivation. Current direct seeding machines for rice in Korea drill irregularly under various operating conditions. This study was conducted to develope a precision seeder which enables the accurate, even-spaced in row placement of rice seeds at uniform depths of 3-4 cm on dry paddy. Design, construction and performance evaluation of the precision seeder were carried out. The tractor rear-mounted type 8-rows precision seeder which performs seeding in addition to fertilizing, ditching, and rotary tilling works on dry paddy was developed. Main components of the seeder were ditcher and leveller, rotary tiller, powered roller type furrow opener, seeding device, powered roller type furrow covering and firming device, hydraulic unit, seeding speed control system, power transmission system, hitch and frame. Ditching, furrow opening, and seed covering and firming performances were good and seeding depths of 2-4 cm could be maintained. Planting accuracies and planting precisions were within 13.6%, and 31.2%, respectively, for planting space of 15 cm, and seeding velocity of 0.5 m/s. These mean variations of average planting space were within 2.1 cm, and 90% of seeds in a hill were seeded within 4.7 cm of hill length, respectively. Error ratios between setting planting space and measured average planting space were shown within 6.7%. Therefore the seeder showed good planting performance up to seeding velocity of 0.5 m/s in field tests. And field capacity of the seeder was about 0.28 ha/hour.

Analysis of Planting Trajectory of Rice Planting Machine for Close Planting Seeding (밀식파종을 위한 이앙기의 식부 궤적 분석)

  • Jo, Jae Min;Choi, Dug Soon;Kim, Byung Do;Kim, Hyeon Tae
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.74-74
    • /
    • 2017
  • 밀식파종 묘 이앙 시스템은 벼농사 생력화를 위한 재배법으로 비용 및 노동력을 획기적으로 줄일 수 있어 시간과 잉여 공간의 유효 활용을 통해 영농 규모의 확대로 인한 농업의 경쟁력을 높일 수 있다. 하지만 밀식 파종한 육묘를 관행과 동일한 1개 소당 3~4주 이앙 가능한 식부부 개발은 미흡한 실정이다. 밀식 파종한 육묘를 기존 이앙기로 이앙작업을 할 경우, 1개 소당 이앙되는 양이 많아져, 벼 생육을 저하 시키는 요인이 된다. 이러한 부분을 해결하기 위해서는 이앙 작업에 직접적으로 영향을 주는 이앙기식부부의 로터케이스, 이앙암을 분석하여 밀식파종 묘에 적용할 수 있는 기술이 필요한 실정이다. 본 연구에서는 식부부의 로터케이스, 이앙암을 3D 스캐너를 활용하여 스캐닝 작업을 한 뒤 역설계를 통하여 도면화 작업을 실시하여 식부부 궤적 분석을 실시하였다. 분석은 다물체 동역학 해석 프로그램인 Recurdyn(V8R4, Functionbay)을 활용하여 진행하였다. 분석결과, 식부부에 위치하는 이앙집게의 형상 및 로터케이스의 기어 배열에 따라 식부부가 형성하는 궤적의 형태가 달라지는 것을 확인 할 수 있었다. 이러한 부분은 밀식파종 묘에 적합한 궤적 분석 및 현장 필드 실험에 필요한 기초자료로 활용하고자 한다.

  • PDF

Effect of Expanded Rice Husk Medium on Rice Seedling for Machine Transplanting

  • Ko Jonghan;Kim Doo Yeol;Sa Jong Gu;Lee Byun Woo;Lee Youn Su
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.1
    • /
    • pp.55-59
    • /
    • 2005
  • Rice farmers can save labor and expenses by using expanded rice husk (ERH) as a seedling medium since ERH is lighter and cheaper than other commercial seedling media (CSM). This study was carried out to develop a method for rice seedling cultivation using ERH as a seedling medium. It is suggested that a mixture of $60\%$ of ERH and $40\%$ of a CSM could be used as a seedling medium; the planting densities would be 240g per tray for infant seedlings and 200 g for young seedlings; and nitrogen (N) would be applied at a rate of 1g per tray for infant seedlings prior to planting and 2g per tray for young seedlings with division. Great care should be taken to use $CO(NH_2)_2$ as an N-source fertilizer. These results would lay a foundation for the rice seedling cultivation with ERH as a medium.

Punching System for Plastic Mulching at Soybean Field - Effect of Punching Knife Shape on the Cutting Performance (비닐 천공 시스템 개발 - 칼날 형상이 천공 성능에 미치는 영향)

  • Hong, Sungha;Choi, Ahnryul;Lee, Kyouseung
    • Journal of agriculture & life science
    • /
    • v.50 no.5
    • /
    • pp.217-224
    • /
    • 2016
  • In this study, performance of a developed automatic punching machine considering the planting density of soybeans was evaluated in the case of the operation speed of 0.18-0.28 m/s. The performance demonstrated a rate of 320-500 ㎡/h, 260-400 ㎡/h, and 210-330 ㎡/h for the 0.20 m, 0.25 m, and 0.30 m soybean planting density, respectively. One hundred percent punching capacity was confirmed in 30 mm distance between the ground and the blade. Additionally, in the 50 mm distance condition, the performance of round, square, and hexagonal blades were observed in the range of 16.7-25.2%, 33.0-42.3%, and 54.5-100.0%, respectively. Above all, the hexagonal blade with a 60° edge angle had the most superior cutting quality demonstrating a smooth and soft cutting plane of the plastic.