• Title/Summary/Keyword: Plant-Use Electricity

Search Result 64, Processing Time 0.024 seconds

Laser Stitch Welding Technology for the Fabrication of Automotive Parts (자동차 부품 제조를 위한 레이저 스티치 용접 기술)

  • Joo, Sung-Min;Bang, Hee-Seon;Han, Jun-Ui;Kim, Kyoung-Hak;Ahn, Byoung-Ho
    • Journal of Welding and Joining
    • /
    • v.31 no.4
    • /
    • pp.1-6
    • /
    • 2013
  • Nowadays, the weight lightening of automotive is required as conserving the environment has become a major worldwide issue. To solve this issue, various researches for the use of light materials(Alalloy, Mgalloy)and ultra high strength steel as substitutes of the current structural material have been carried out. Application of laser stitch welding to the assembly of automotive produces improvement in strength, lightening of body, higher fuel efficiency, lower production cost as well as reduction in assemble line due to its fast welding speed, superior accessible and weld quality. This process overcomes the shortcomings of the current resistance spot welding such as high electricity consumption, electrode replacement, and economical, technical limitation in design and production method of automotives.

The Application of Project control Techniques to Process Control: The Effect of Temporal Information on Human Monitoring Tasks

  • Parush, A.;Shtub, A.;Shavit, D.
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.10-14
    • /
    • 2001
  • We studied the use of time-related information, with and without prediction, to support human operators performing moni-toring and control tasks in the process. Based on monitoring and control techniques used for Project Management we developed a display design for the process industries. A simulated power plant was used to test the hypothesis that availability of predictions along with information on past trends can improve the performances of the human operator handling faults. Several designs of dis-plays were tested in the experiment in which human operators had to detect and handle two types of faults(local and systems wide) in the simulated electricity generation process. Analysis of the results revealed that temporal data, with and without prediction, signifi-cantly reduced response time. Our results encourage the integration of temporal information and prediction in displays used for the control processes to enhance the capabilities of the human operators. Based on the analysis we proposed some guidelines for the de-signer of the human interface of a process control system.

  • PDF

Economic analysis of biomass torrefaction plants integrated with corn ethanol plants and coal-fired power plants

  • Tiffany, Douglas G.;Lee, Won Fy;Morey, Vance;Kaliyan, Nalladurai
    • Advances in Energy Research
    • /
    • v.1 no.2
    • /
    • pp.127-146
    • /
    • 2013
  • Torrefaction technologies convert assorted biomass feedstocks into energy-concentrated, carbon neutral fuel that is economically transported and easily ground for blending with fossil coals at numerous power plants around the world without needs to retrofit. Utilization of torrefied biomass in conventional electric generating units may be an increasingly attractive alternative for electricity generation as aging power plants in the world need to be upgraded or improved. This paper examines the economic feasibility of torrefaction in different scenarios by modeling torrefaction plants producing 136,078 t/year (150,000 ton/year) biocoal from wood and corn stover. The utilization of biocoal blends in existing coal-fired power plants is modeled to determine the demand for this fuel in the context of emerging policies regulating emissions from coal in the U.S. setting. Opportunities to co-locate torrefaction facilities adjacent to corn ethanol plants and coal-fired power plants are explored as means to improve economics for collaborating businesses. Life cycle analysis was conducted in parallel to this economic study and was used to determine environmental impacts of converting biomass to biocoal for blending in coal-fired power plants as well as the use of substantial flows of off-gasses produced in the torrefaction process. Sensitivity analysis of the financial rates of return of the different businesses has been performed to measure impacts of different factors, whether input prices, output prices, or policy measures that render costs or rewards for the businesses.

Biomass Energy in the USA: A Literature Review (II) - Marketing and Policies for Green Power Production with Environmental Attributes - (미국 에너지 시장에 공급되는 바이오에너지에 관한 연구(II) - 환경친화적 녹색전기의 마케팅 및 정부지원책에 대하여 -)

  • Kim, Yeong-Suk;Gorman, Thomas
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.1 s.129
    • /
    • pp.97-110
    • /
    • 2005
  • This paper is the second part of a literature review describing the current status of biomass energy use in the USA. The bioenergy technologies that convert biomass resources to a form of energy were presented, in particular focused on existing coal fired boiler, high efficiency gasification combined cycle. We presented latest biomass power energy supply, economic issues such as its production and plant investment cost in the Part I. In the Part II, our review summarized policy and market issues for electricity consumers, benefits from biomass power which could offer an alternative to conventional energy sources in the form of environmental, rural economic growth, and national energy security in the USA.

The Pahlev Reliability Index: A measurement for the resilience of power generation technologies versus climate change

  • Norouzi, Nima
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1658-1663
    • /
    • 2021
  • Research on climate change and global warming on the power generation systems are rapidly increasing because of the Importance of the sustainable energy supply, thus the electricity supply since its growing share, in the end, uses energy supply. However, some researchers conducted this field, but many research gaps are not mentioned and filled in this field's literature since the lack of general statements and the quantitative models and formulation of the issue. In this research, an exergy-based model is implemented to model a set of six power generation technologies (combined cycle, gas turbine, nuclear plant, solar PV, and wind turbine) and use this model to simulate each technology's responses to climate change impacts. Finally, using these responses to define and calculate a formulation for the relationship between the system's energy performance in different environmental situations and a dimensionless index to quantize each power technology's reliability against the climate change impacts called the Pahlev reliability index (P-index) of the power technology. The results have shown that solar and nuclear technologies are the most, and wind turbines are the least reliable power generation technologies.

Measurement of the Benefits from Safeguarding Energy Security through Building the Integrated Gasification Combined Cycle Power Plant (석탄가스화 복합발전소 건설의 에너지안보 확보편익 추정)

  • Lim, Seul-Ye;Choi, Hyo-Yeon;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.40-47
    • /
    • 2015
  • Integrated gasification combined cycle (IGCC) power plants not only emit less greenhouse gases and air pollutants than conventional coal-fired power plants, but also use low-price, low-quality, and internationally easily procurable coal. Thus we can benefit from safeguarding energy security through building the IGCC power plant. This paper attempts to value the benefits of energy security enhanced by IGCC power plant. To this end, we report here the results from a contingent valuation survey of randomly selected 600 households. A combination of a double-bounded model and a spike model is applied for the purpose of increasing statistical efficiency and dealing with zero(0) willingness to pay data, respectively. The results show that the respondents are additionally willing to pay 6.05 won for 1kWh of electricity generated from IGCC power plant. In other words, the benefits from safeguarding energy security through building the IGCC power plant are 6.05 won per kWh. Given that the expected amount of generation from the Taean IGCC power plant that is scheduled to be built in late 2015 is 2.27 TWh per year, the benefits are estimated to be 13.74 billion won per year.

Investigation on Replacement Criteria for Aged Diesel Driven Power Generation Facility by Monte Carlo Simulation (몬테카를로 시뮬레이션을 통한 노후 디젤발전설비 교체기준 고찰)

  • Park, Myungsoo;Song, Gee Wook;Seo, Sang Il;Won, Dong Ju
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.2
    • /
    • pp.89-97
    • /
    • 2014
  • The diesel driven power generation facility provides most of electricity of island region where is isolated from the main land power supply system. It is possible to extend the life of diesel driven power generation facility by periodic maintenance. However, the long-term use of diesel driven power generation facility increases the operating cost due to aging hardware and reduced plant efficiency. In other words, on-time replacement of aging diesel driven power generation facility reduces plant operation cost. The purpose of this study presents major indicators to represent the characteristics of the diesel generator and conducts sensitivity analysis using Monte Carlo analysis. In addition, status core which indicates quantitatively the state of the diesel driven power generation facility is defined and prepare the replacement criteria based on the state score.

Characteristic studies of coal power plants ash sample and monitoring of PM 2.5

  • Thriveni., T;Ramakrishna., CH;Nam, Seong Young;kim, Chunsik;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.45-56
    • /
    • 2017
  • Coal power plants produce electricity for the nation's power grid, but they also produce more hazardous air emissions than any other industrial pollution sources. The quantity is staggering, over 386,000 tons of 84 separate hazardous air pollutants spew from over 400 plants in 46 states. In South Korea also, annual coal ash generation from coal-fired power plants were about 6 million tons in 2015. Pollutants containing particulate matter 10, 2.5 (PM10, PM2.5), heavy metals and dioxins from coal-fired power plant. The emissions threaten the health of people who live near these power plants, as well as those who live hundreds of miles away. These pollutants that have long-term impacts on the environment because they accumulate in soil, water and animals. The present study is to investigate the physical and chemical characteristics of coal-fired power plant fly ash and bottom ash contains particulate matter, whose particulate sizes are lower than $PM_{10}$ and $PM_{2.5}$ and heavy metals. There are wide commercial technologies were available for monitoring the PM 2.5 and ultra-fine particles, among those carbonation technology is a good tool for stabilizing the alkaline waste materials. We collected the coal ash samples from different coal power plants and the chemical composition of coal fly ash was characterized by XRF. In the present laboratory research approach reveals that potential application of carbonation technology for particulate matter $PM_{10}$, $PM_{2.5}$ and stabilization of heavy metals. The significance of this emerging carbonation technology was improving the chemical and physical properties of fly ash and bottom ash samples can facilitate wide re use in construction applications.

Regional Production, Income and Employment Impact of Nuclear Power Plant (원자력발전소(原子力發電所)가 지역(地域)의 생산(生産), 소득(所得)과 고용(雇傭)에 미치는 효과(效果) 분석(分析))

  • Shin, Yong-In;Yang, Kwang-Nam
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.2
    • /
    • pp.272-284
    • /
    • 1996
  • The present study has quantitatively assessed the regional production, income and employment impact resulting from the construction and operation of nuclear power plant (NPP) upon the domestic local areas by applying the regional input-output analysis model to the case of Wolsong unit-l site. The conclusions regarding the most likely regional economic impacts upon the wolsong site are summarized as follows: 1. The income multipliers are calculated to be 1.563 for the construction phase and 1.500 for the operation phase. These values are relatively high compared with those of other conventional facilities. 2. The level of total employee's wage induced employment associated with the construction phase has been estimated to be 37,000 while that with the operational phase in 1990 to be 5,610. 3. With relation to the aspect of resident welfare it is found that the industrial sector associated with electricity, gas and water supply have remarkably improved with the construction of the NPP. 4. The NPP siting has induced substantial changes in interindustry (input-output) structures of the Wolsong unit-l site which is one of the rural areas where all the domestic NPPs are sited. Such changes are attributed to the industrial recomposition of the region. 5. With the application of other regional economic analysis models and the use of more sufficient regional data, other detailed studies on the economic impact analysis of domestic NPP-related facility sitings are suggested to be carried out further since the influence of NPP sitings is significant to the national economic impact as well as the regional economic impact.

  • PDF

Integrated Management System to Improve Photovoltaic Operation Efficiency (태양광발전 운영효율 향상을 위한 통합관리시스템)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.113-118
    • /
    • 2019
  • A solar power plant is a facility that produces electricity. As the risk of fire and electric shock accidents is diversified, the risk of workers, surrounding people, and facilities is increased, preventing safety accidents and promptly responding to safety accidents Is emerging. In light of the necessity of such development, it is necessary to develop a solar power generation management system that can diagnose and maintain the problems of the power generation system in real time by developing technologies for collecting and analyzing the data produced by the solar power generation system As a result, the utilization rate and the maintenance cost can be reduced. In order to do this, it is necessary to accurately predict the solar power generation amount in the present state, to diagnose the abnormality of the current power generation state and to grasp the abnormal position, and to use the model considering economical efficiency when the abnormal position is grasped, And the time and other information should be provided.