• Title/Summary/Keyword: Plant growth control system

Search Result 407, Processing Time 0.027 seconds

IOT Intelligent Watering Sensor For Indoor Plant

  • Hana, Mujlid;Haneen Daifallah, Alghamdi;Hind Abdulaziz, Alkharashi;Marah Awadh, Alkhaldi
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.171-177
    • /
    • 2022
  • The number of people who own indoor plants is growing today, but as a result of their busy lifestyles-such as work or travel-as well as a lack of enthusiasm in caring for their plants, their plants wither. The use of an irrigation control system with a surveillance camera can assist such folks in taking care of their plants. Such a device can assist in remotely watering plants at predetermined times and checking on the health of the plants. The proprietors would be able to live comfortably without feeling bad thanks to this change. Internet access is required for this technology in order to monitor the plants and control the watering through apps. A sensor is installed in the soil to monitor soil humidity and send data to the microcontroller for irrigation, allowing the owner to schedule irrigation as they see fit and keep an eye on their plants all day. With the use of a remote irrigation control system, the plants will grow properly and be irrigated with the proper amount of water, and the owners will be so glad and delighted to watch their plants. Knowing the time and quantity of water are vital parts of the plant growth.

Induction of Defense-Related Physiological and Antioxidant Enzyme Response against Powdery Mildew Disease in Okra (Abelmoschus esculentus L.) Plant by Using Chitosan and Potassium Salts

  • Soliman, Mona H.;El-Mohamedy, Riad S.R.
    • Mycobiology
    • /
    • v.45 no.4
    • /
    • pp.409-420
    • /
    • 2017
  • Foliar sprays of three plant resistance inducers, including chitosan (CH), potassium sorbate (PS) ($C_6H_7kO_2$), and potassium bicarbonates (PB) ($KHCO_3$), were used for resistance inducing against Erysiphe cichoracearum DC (powdery mildew) infecting okra plants. Experiments under green house and field conditions showed that, the powdery mildew disease severity was significantly reduced with all tested treatments of CH, PS, and PB in comparison with untreated control. CH at 0.5% and 0.75% (w/v) plus PS at 1.0% and 2.0% and/or PB at 2.0% or 3.0% recorded as the most effective treatments. Moreover, the highest values of vegetative studies and yield were observed with such treatments. CH and potassium salts treatments reflected many compounds of defense singles which leading to the activation power defense system in okra plant. The highest records of reduction in powdery mildew were accompanied with increasing in total phenolic, protein content and increased the activity of polyphenol oxidase, peroxidase, chitinase, and ${\beta}$-1,3-glucanase in okra plants. Meanwhile, single treatments of CH, PS, and PB at high concentration (0.75%, 2.0%, and/or 3.0%) caused considerable effects. Therefore, application of CH and potassium salts as natural and chemical inducers by foliar methods can be used to control of powdery mildew disease at early stages of growth and led to a maximum fruit yield in okra plants.

Growth and Phytochemical Contents of Spinach as Affected by Different Type of Fluorescent Lamp in a Closed-type Plant Production System (밀폐형 식물 생산 시스템에서 형광등 종류에 따른 시금치의 생육 및 기능성물질 함량)

  • Kim, Hyeon Min;Kim, Hye Min;Lee, Hye Ri;Lee, Jae Eun;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.386-392
    • /
    • 2017
  • This study was conducted to examine the growth and phytochemical contents of spinach (Spinacia Oleracea L. 'Sushiro') as affected by different fluorescent lamps in a closed-type plant production system. Seeds were sown in a 128-cell plug tray filled in rockwool. The seedlings were transplanted into a DFT (deep floating technique) system with recycling nutrient solution (EC $1.5dS{\cdot}m^{-1}$ and pH 6.5) in a closed-type plant production system. The seedlings were grown under 3 types of fluorescent lamp, #S (NBFHF 32S8EX-D, CH LIGHTING Co. Ltd., China), #O (FHF32SSEX-D, Osram Co. Ltd., Germany), and #P (FLR32SS EX-D, Philips Co. Ltd., The Netherlands) at $150{\mu}mol{\cdot}m-2{\cdot}s^{-1}\;PPFD$ with a photoperiod of 14/10 (light/dark) hours. Plants were cultured under condition of $25{\pm}1^{\circ}C$ temperature and $60{\pm}10%$ relative humidity after transplanting. Thirty plants per each treatment were cultivated for $6^{th}$ week after transplanting. And growth and phytochemical contents were measured at $3^{rd}$ and $6^{th}$ week. At the $3^{rd}$ week after transplanting, the parameter values of plant height and leaf width were higher in the #O than the others. However, fresh and dry weights of root were the greatest in the #P. In addition, total phenolic concentration was the greatest in the #P. At $6^{th}$ week after transplanting, the #O had the greatest growth of spinach in the plant height and fresh and dry weights of shoot. The total phenolic contents significantly increased in the #O and showed significantly difference. However, there was no significant difference all treatments in antioxidant activity. Therefore, these results suggest that the #O was suitable for the growth and phytochemical accumulation of spinach in a closed-type plant production system.

Plant Growth and Morphogenesis Control in Transplant Production System using Light-emitting Diodes(LEDs) as Artificial Light Source - Spectral Characteristics and Light Intensity of LEDs - (인공광원으로 발광다이오우드를 이용한 묘생산 시스템에서 식물생장 및 형태형성 제어 - 발광다이오우드의 분광 특성 및 광강도 -)

  • 김용현
    • Journal of Biosystems Engineering
    • /
    • v.24 no.2
    • /
    • pp.115-122
    • /
    • 1999
  • Because of their small mass, volume, solid state construction and long life, light-emitting diodes(LEDs) hold promises as a lighting source for intensive plant production system. Spectral characteristics and light intensity of LEDs were tested to investigate their feasibility as artificial lighting sources for growth and morphogenesis control in transplant production system. Blue, green, and red LEDs had a peak-emission wavelength at 442nm, 522nm, and 673nm, respectively. Their half width defined as the difference between upper and lower wavelength in the intensity equivalent to 50% of the maximum intensity showed 26nm, 41nm, and 74nm, respectively. Photosynthetic photon flux(PPE) at the distance of 9cm under the LEDs array was measured as $235{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for red, $109{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for green, and $75{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for blue LEDs. At the same distance, green LEDs had the illuminance of 13,0001x, nine to ten times higher than those of red and blue LEDs. Red, green, and blue LEDs at a distance of 9cm had the irradiance of $46W{\cdot}m^{-2},\;19W{\cdot}m^{-2},\;8W{\cdot}m^{-2}$, respectively. Light intensity of blue, green, and red LEDs increased linearly in proportion to the magnitude of the current applied to the operating circuit. Thus the light intensity of LEDs was controlled by the applied current in operating circuit.

  • PDF

The Effect of Polysaccharide from Angelica Gigas Nakai on Controlling the Differentiation of Human Embryonic Stem Cells

  • Park, Young-S.;Lee, Jae-E.;Lee, Seo-H.;Lee, Hyeon-Y.
    • Korean Journal of Medicinal Crop Science
    • /
    • v.10 no.4
    • /
    • pp.237-242
    • /
    • 2002
  • It was found that the purified extract from A. gigas Nakai (polysaccharide, M.W., 25 kD) controled differentiating human ES cells. Its optimal supplementation concentration was decided as 0.8 $({\mu}g/ml)$ to efficiently control the differentiation. It also enhanced the cell growth, compared to the control. However, most widely used and commercially available differentiating agent, Leukemia Inhibitory Factor (LIF) negatively affected on the cell growth even though it controls the differentiation of ES cells, down to 40-50 % based on morphological observation and telomerase activity. It was presumed that the extract first affected on cell membrane and resulted in controlling signal system, then amplify gene expression of telomere, which enhanced the telomerase activity up to three times compared to the control. LIF only increased the enzyme activity up to two times. It was confirmed that the extract from A. gigas Nakai could be used for substituting currently used differentiation controlling agent, LIF from animal resources as a cheap plant resource and not affecting the cell growth. It can broaden the application of the plants not only to functional foods and their substitutes but also to fine chemicals and most cutting-edge biopharmaceutical medicine.

Combined Application of Pseudomonas fluorescens and Trichoderma viride has an Improved Biocontrol Activity Against Stem Rot in Groundnut

  • Manjula, K.;Kishore, G.Krishna;Girish, A.G.;Singh, S.D.
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.75-80
    • /
    • 2004
  • In an attempt to develop effective biocontrol system for management of stem rot disease in groundnut, 57 bacterial isolates and 13 isolates of Trichoderma spp. were evaluated for their antagonistic activity against Sclerotium rolfsii. The antagonists were selected based on their ability to inhibit the external growth of S. rolfsii from infected groundnut seeds. Four isolates of Pseudomonas fluorescens, GB 4, GB 8, GB 10 and GB 27, and T. viride pq 1 were identified as potent antagonists of S. rolfsii. T. viride pq 1 produced extracellular chitinase and parasitized the mycelium of S. rolfsii. Under controlled environment conditions, P. fluorescens GB 10, GB 27, T. viride pq 1 and the systemic fungicide Thiram(equation omitted) reduced the mortality of S. rolfsii inoculated to groundnut seedlings by 58.0%, 55.9%, 70.0% and 25.9%, respectively compared to control. In vitro growth of P. fluorescens GB 10 and GB 27 was compatible with T. viride pq 1 and Thiram(equation omitted). Integrated use of these two bacterial isolates with T. viride pq 1 or Thiram(equation omitted) improved their biocontrol efficacy. Combined application of either GB 10 or GB 27 with T. viride pq 1 was significantly effective than that with Thiram(equation omitted) in protecting groundnut seedlings from stem rot infection.

Mannitol Amendment as a Carbon Source in a Bean-based Formulation Enhances Biocontrol Efficacy of a 2,4-diacetylphloroglucinol-producing Pseudomonas sp. NJ134 Against Tomato Fusarium Wilt

  • Kang, Beom-Ryong
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.390-395
    • /
    • 2011
  • Fusarium wilt caused by Fusarium oxysporum has become a serious problem world-wide and relies heavily on chemical fungicides. We selected Pseudomonas sp. NJ134 to develop an effective biocontrol strategy. This strain shows strong antagonistic activity against F. oxysporum. Biochemical analyses of ethyl-acetate extracts of NJ134 culture filtrates showed that 2,4-diacetylphloroglucinol (DAPG) was the major compound inhibiting in vitro growth of F. oxysporum. DAPG production was greatly enhanced in the NJ134 strain by adding mannitol to the growth media, and in vitro antagonistic activity against F. oxysporum increased. Bioformulations developed from growth of NJ134 in sterile bean media with mannitol as the carbon source under plastic bags resulted in effective biocontrol efficacy against Fusarium wilt. The efficacy of the bioformulated product depended on the carbon source and dose. Mannitol amendment in the bean-based formulation showed strong effective biocontrol against tomato Fusarium wilt through increased DAPG levels and a higher cell density compared to that in a glucose-amended formulation. These results suggest that this bioformulated product could be a new effective biocontrol system to control Fusarium wilt in the field.

Growth Characteristics of Lettuce and Korean Mint as Affected by Microbubble in a Closed-type Plant Production System (밀폐형 식물생산시스템에서 마이크로버블 처리에 따른 상추와 배초향의 생장 특성)

  • Eun Won Park;Hee Sung Hwang;Hyeon Woo Jeong;Seung Jae Hwang
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.234-241
    • /
    • 2023
  • This study was conducted to investigate the growth of lettuce (Lactuca sativa L.) and Korean mint (Agastache rugosa Kuntze) with microbubble in a closed-type plant production system (CPPS) with a deep flow technique (DFT). Lettuce and Korean mint were grown in CPPS for 23 days. Microbubble was treated for 5 minutes daily at 9:00, 13:00, and 17:00 for 16 days. The leaf length, leaf width, leaf area, and fresh and dry weights of lettuce and Korean mint were significantly lower in microbubble than in the control. The total root length, root surface area, and the number of root tips of lettuce and Korean mint were significantly lower in the microbubble than in the control. In the case of average root diameter, there was no difference between the treatments of lettuce. However, Korean mint significantly increased in thickness in the microbubble treatment, indicating variations among the different crops. The results of the research indicated that microbubble treatment in the DFT inhibited plant growth by inducing abiotic stress in lettuce and Korean mint.

Interactions of nitrogen supplying level and elevated CO2 on Growth and Photosynthesis of Picea koraiensis Nakai seedlings

  • Wang Y.J.;Mao Z.J.;Park K.W.
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2004.11a
    • /
    • pp.139-143
    • /
    • 2004
  • To evaluate the biological and physiological response of Picea koraiensis Nakai to elevated $CO_2$ and nitrogen.3-year old seedlings were planted in an ambient and 700 ppm $CO_2$ at low (2mM $NH_4NO_3$) or high nitrogen (16mM $NH_4NO_3$) supplying treatments for 3 months. Photosynthetic parameters were measured monthly. Seedlings were harvested at monthly intervals and growth parameters of root system, stem and needle fractions were evaluated. The result showed that height of the seedlings grown at both of elevated $CO_2Xhigh$ nitrogen and elevated CO2×low nitrogen supplying treatments increased significantly more than that of at ambient CO2 treatments. Seedlings grown at elevated $CO_2Xhigh$ nitrogen produced more root biomass than at elevated $CO_2Xlow$ nitrogen and ambient $CO_2Xhigh$ nitrogen treatments. This result suggested that the root growth response of Picea koraiensis seedlings was greater in elevated $CO_2{\times}high$ nitrogen regime, which is very important for carbon sequestration in soil. $A_{max}$ of the seedlings grown at elevated $CO_2Xhigh$ nitrogen increased during the three months significantly, and $A_{max}$ of the seedlings grown at the other three treatments decreased significantly, suggesting that the interaction between elevated $CO_2$ and high nitrogen supplying stimulates the $A_{max}$ of Picea koraiensis. $A_{max}$ of the seedlings grown at elevated $CO_2Xlow$ nitrogen showed higher than other three treatments in the first month of the experiment, but decreased in succedent two months, suggesting that elevated $CO_2$ promotes the photosynthesis of the seedlings. However long term growth in elevated $CO_2Xlow$ nitrogen supplying condition resulted in an acclimatory decreased in leaf photosynthesis.

  • PDF

Effect of Water Treatment Sludge Application on the Growth of Korean Local Corn(Zeas Mays L.) (옥수수에 대한 정수 슬러지(Alum sludge)의 시용효과와 Aluminum이 옥수수의 유식물 생장에 미치는 영향)

  • Chang, Ki Woon;Koo, Ja Kong;Lim, Jae Shin;Kim, Young Han
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.1
    • /
    • pp.73-83
    • /
    • 1995
  • Effect of water treatment sludge(alum sludge) application on the growth of Korea local corn(Zeas Mays L.) was evaluated and phytotoxicity of alum sludge on the growth of corn roots and plant height was tested. Alum sludge itself and composted alum sludge compost were applicated by 1500kg/ha in the plot respectively. For the fertility test, yield, chlorophyll content, plant height of corn treated by alum sludge and composted alum sludge were better than that of control. No clear toxixity of alum sludge was found. At the food chemical analyses of seed corn, no obvious component variation were evaluated either. Test of pH effect on phytotoxicity of alum sludge on corns showed that plant height and root growth of corns were inhibited at low pH 4 solution. Phytotoxicity test of alum sludge extract which was extracted at various pH solutions, showed that growth and cations uptake inhibition were found the more serious the lower the pH. Plant height and root growth injury were serious at higher than 100ppm Al content solution.

  • PDF