• Title/Summary/Keyword: Plant growth

Search Result 9,980, Processing Time 0.036 seconds

Molecular Biology of Secondary Growth

  • Han, Kyung-Hwan
    • Journal of Plant Biotechnology
    • /
    • v.3 no.2
    • /
    • pp.45-57
    • /
    • 2001
  • Trees have the ability to undergo secondary growth and produce a woody body. This tree-specific growth is affected by the secondary vascular system and the developmental continuum of secondary phloem and xylem. Secondary growth is one of the most important biological processes on earth. Considering its economic and environmental significance, our knowledge of tree growth and development is surprisingly limited. Trees have received little attention as model species in plant science, as most Plant biology questions can be best addressed by using herbaceous model species, such as Arabidopsis. Furthermore, tree biology is difficult to study mainly due to the inherent problems of tree species, including large size, long generation time, large genome size, and recalcitrance to biotechnological manipulations. Despite all of this, one must rely on trees as models to study tree-specific questions, such as secondary growth, which cannot be studied effectively in non-woody model species. Recent advances in genomics technology provide a unique opportunity to overcome these inherent tree-related problems. Several groups, including our own, have been successful in studying the biology of wood formation with a variety of hardwood and softwood species. In this article, 1 first review the current understanding of tree growth and then discuss the recent attempts to fully explore and realize the potential of molecular biology as a tool for enhanced understanding of secondary growth.

  • PDF

Application of Bacterial Endophytes to Control Bacterial Leaf Blight Disease and Promote Rice Growth

  • Ooi, Ying Shing;Nor, Nik M.I. Mohamed;Furusawa, Go;Tharek, Munirah;Ghazali, Amir H.
    • The Plant Pathology Journal
    • /
    • v.38 no.5
    • /
    • pp.490-502
    • /
    • 2022
  • Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight (BLB) disease in rice (Oryza sativa L.) and it is among the most destructive pathogen responsible for severe yield losses. Potential bacterial biocontrol agents (BCAs) with plant growth promotion (PGP) abilities can be applied to better manage the BLB disease and increase crop yield, compared to current conventional practices. Thus, this study aimed to isolate, screen, and identify potential BCAs with PGP abilities. Isolation of the BCAs was performed from internal plant tissues and rhizosphere soil of healthy and Xoo-infected rice. A total of 18 bacterial strains were successfully screened for in vitro antagonistic ability against Xoo, siderophore production and PGP potentials. Among the bacterial strains, 3 endophytes, Bacillus sp. strain USML8, Bacillus sp. strain USML9, and Bacillus sp. strain USMR1 which were isolated from diseased plants harbored the BCA traits and significantly reduced leaf blight severity of rice. Simultaneously, the endophytic BCAs also possessed plant growth promoting traits and were able to enhance rice growth. Application of the selected endophytes (BCAs-PGP) at the early growth stage of rice exhibited potential in suppressing BLB disease and promoting rice growth.

Plant Growth Promoting Activities of Some Rhizosphere Bacteria and their Effect on Brassica rapa Growth

  • Hussein, Khalid A.;Jung, Yeong Sang;Joo, Jin Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.3
    • /
    • pp.141-146
    • /
    • 2014
  • The necessity to develop economical and eco-friendly technologies is steadily increasing. Plant growth promoting rhizomicrobial strains PGPR are a group of microorganisms that actively colonize plant roots and increase plant growth and yield. Pot experiments were used to investigate the potential of some rhizobacterial strains to enhance the Brassica rapa growth. Microbial strains were successfully isolated from the rhizosphere of Panax ginseng and characterized based on its morphological and plant growth promotion characters. Surface disinfected seeds of Wisconsin Fast B. rapa were inoculated with the selected PGPR microorganisms. The different pots treatments were inoculated by its corresponding PGPR ($10^7cfu\;mL^{-1}$) and incubated in the growth chamber at $25^{\circ}C$ and 65% RH, the light period was adjusted to 24 hours (day). NPK chemical fertilizer and trade product (EMRO, USA) of effective microorganisms as well as un-inoculated control were used for comparison. Plants harvested in 40 days were found to have significant increase in leaf chlorophyll units and plant height and also in dry weight of root and shoot in the inoculated seedlings. Root and shoot length and also leaf surface area significantly were increased by bacterial inoculation in sterile soil. The study suggests that Rhodobacter capsulatus and Azotobacter chroococcum are beneficial for B. rapa growth as they enhance growth and induced IAA production and phosphorus solubilization. This study presents some rhizomicrobial strains that significantly promoted growth of Wisconsin Fast Plant B. rapa in pot experiment under different soil conditions.

Effect of Plant Growth Regulators on Plant Regeneration Through Somatic Embryogenesis of Medicago sativa L.

  • Kim, Young-Sook;Kim, Mi-Young;Yang, Moon-Sik
    • Journal of Plant Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.87-90
    • /
    • 2004
  • An efficient plant regeneration system in alfalfa (Medicago sativa L.) through somatic embryogenesis was established. Embryogenic callus was obtained by culture of hypocotyl segments on MS medium with 0.02mg $L^{-1}$ IAA and 1.0mg $L^{-1}$ zeatin after 45 days of culture. Embryogenic calli were converted to the somatic embryos when transferred to either MS medium without plant growth regulators (PGRs) or MS medium containing various cytokinin (BA, kinetin and zeatin). Most of the somatic embryos were developed into plantlets on MS medium supplemented with 0.1 mg $L^{-1}$ kinetin. Also, secondary embryos appeared on the surface of primary embryo but they showed abnormal growth. Regenerated plantlets were transplanted to pots containing vermiculite and perlite for further analysis.

Emerging Roles of RNA-Binding Proteins in Plant Growth, Development, and Stress Responses

  • Lee, Kwanuk;Kang, Hunseung
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.179-185
    • /
    • 2016
  • Posttranscriptional regulation of RNA metabolism, including RNA processing, intron splicing, editing, RNA export, and decay, is increasingly regarded as an essential step for fine-tuning the regulation of gene expression in eukaryotes. RNA-binding proteins (RBPs) are central regulatory factors controlling posttranscriptional RNA metabolism during plant growth, development, and stress responses. Although functional roles of diverse RBPs in living organisms have been determined during the last decades, our understanding of the functional roles of RBPs in plants is lagging far behind our understanding of those in other organisms, including animals, bacteria, and viruses. However, recent functional analysis of multiple RBP family members involved in plant RNA metabolism and elucidation of the mechanistic roles of RBPs shed light on the cellular roles of diverse RBPs in growth, development, and stress responses of plants. In this review, we will discuss recent studies demonstrating the emerging roles of multiple RBP family members that play essential roles in RNA metabolism during plant growth, development, and stress responses.

Effect of Gamma Rays on the Growth Performance of Bangladesh Clone Tea

  • Ali, M. Aslam;Samad, M. A.;Amin, M. K.
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.1
    • /
    • pp.66-70
    • /
    • 2005
  • The experiment was carried out to investigate the effects of gamma radiation on the early growth performance and physiological traits of BT2 clone tea, the most promising cultivar released by Bangladesh Tea Research Institute. The fresh shoot cuttings were irradiated with seven different levels of gamma radiation such as 0, 10, 20, 30, 40, 50 and 60 Gy from Cobalt 60Co source (Dept. of PlantBreeding, Bangladesh Institute of Nuclear Agriculture). Thereafter, the irradiated shoot cuttings were planted in polythene bags and kept under natural conditions. It was observed that callusing was initiated from 8th weeks after placement of tea shoot cuttings in the polythene bags and completed by 12th weeks. The morphological growth of tea shoot cuttings were recorded under varying levels of gamma radiation and growth stages. It was observed that the number of leaves, number of primary branches, base diameter, root length and total leaf area per plant significantly increased with the progress of time and increasing levels of gamma radiation, however, the plant height showed decreasing trend with the increasing levels of gamma radiation, which could be due to the change in chromosomal structure and genetic makeup. After 56 weeks of planting, the plant height, the number of leaves and primary branches per plant, base diameter, root length and total leaf area per plant recorded were 65.70 cm, 30.67, 7.33, 1.48 cm, 23.50 cm, and 1250.67 cm2 per plant respectively under the radiation level 60 Gy, whereas the corresponding figures of the above parameters at the control treatment were 76.21 cm, 18.33, 3.67, 0.92 cm, 17.75 cm and 778.33 cm2 per plant, respectively. A significant relationship was observed among the physiological growth parameters with the increasing levels of gamma radiation. The total dry matter gain, leaf area index, absolute growth rate and relative growth rate were significantly influenced with the rising levels of gamma radiation (up to 60 Gy), whereas the net assimilation rate of individual tea plant non-significantly responded as compared to those of control treatment. Finally after 56 weeks of planting, the maximum total dry weight gain, leaf area index, absolute growth rate, relative growth rate and net assimilation rate recorded under 60 Gay radiation level were 40.25 g/plant/week, 4.25, 1.18 g/week, 0.0621g/g/week and 17.07 g/m2/week respectively.

On the Growth and Total Nitrogen Changes of Glycine max. Artificial Plant Communities, Grown in Sandy Loam Soil withe a Controlled Moisture Content (토양함수량의 조절에 의한 Glycine max. 인공군업의 성장과 총질소량의 변동에 관하여)

  • 임양재
    • Journal of Plant Biology
    • /
    • v.14 no.3
    • /
    • pp.21-28
    • /
    • 1971
  • Dry matter production, leaf area growth and total nitrogen changes were studied in Glycine max. soybean communities, which were grown in sandy loam soils controlled to provide various moisture levels, i.e., 5-7%(level 1), 8-10%(level 2), 11-13%(level 3), 14-15%(lev디 4), 17-20%(level 5) and 22-24%(level 6). A summary of the results is shown. The maximum dry matter production of leaves, stems and nodules and the maximum leaf area per unit area were at level 5, but the maximum of root dry matter production was at level 4. Total nitrogen content of the soybean plant decreased with growth, but each level of soil moisture content also showed a little difference. Water content of the plant decreased with plant age and soil water deficiency, especially in roots and nodules. Nodule formation increased in proportion to soil moisture content. total nitrogen content of the soil on which the soybeans grew, increased from 0.23% before sowing to 0.30% at 100 days after sowing. It seems that soil water content acts as a linear factor in the elongation or dry weight increase of shoots and roots until increasing to level 5. Considering the pattern of plant growth through analysis of the shoot and root dry weight ratio, or the photosynthetic organ and non-photosynthetic organ dry weight ratio, the asymptote of plant growth at a high soil water content exceeded that at a low soil water content.

  • PDF

Effects of Gibberellin Biosynthetic Inhibitors on Oil, Secoisolaresonolodiglucoside, Seed Yield and Endogenous Gibberellin Content in Flax

  • Kim, Sang-Kuk;Kim, Hak-Yoon
    • Korean Journal of Plant Resources
    • /
    • v.27 no.3
    • /
    • pp.229-235
    • /
    • 2014
  • Flax (Linum usitatissimum L.) has been used for the edible oil in Korea. The evaluate the effect of plant growth retardants on flaxseed yield, oil content, and gibberellin level, chloromequat chloride (CMC), paclobutrazol (PBZ), and prohexadione-Ca (PHC) were used as plant growth retardants in this study. These plant growth retardants were foliar-sprayed to flax plant at 55 days after seeding. The concentrations of each plant growth retardant were as followed: CMC 250, 500, 1000 ppm, PBZ 40, 80, 160 ppm and PHC 500, 1000, 2000 ppm. PHC treatment to forming bolls was more stimulated than CMC and PBZ. The highest ripened seed rate was observed in PHC treatment at 2000ppm. The high see yields were obtained in PHC treatment following PBZ and CMC, in turn. Seed yield that significantly increased in PBZ and PHC was found to be increased 12.4 ~ 23.9% as compared to the control. The PHC showed higher flaxseed production and oil yield than that of CMC and PBZ. The results obtained in the present study suggest that higher concentration of plant growth retardant (PHC) increased flaxseed yield and oil content. The optimal concentration of PHC treatment was observed in 2000 ppm. It concludes that the foliar application of PHC 2000 ppm may be useful for the increasing oil and higher seed production in flax plants.

Studies on the Mathematical Analysis of Growth Kinetics in Tobacco (Nicotiana tabacum L. ) I. Growth Curve and Growth Velocity of Total Dry Weight. (담배의 생장반응에 관한 수리해석적 연구 I. 전건물중의 생장곡선과 생장속도)

  • 김용암;변주섭
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.3 no.2
    • /
    • pp.109-114
    • /
    • 1981
  • This experiment was conducted with three varieties (Hicks, Burley 21, Sohyang) and cropping systems (Improved mulching, Mulching, Non mulching) of NC 2326 to analyze growth kinetics by means of growth function involving its velocity and accelerated velocity. The basic growth data were obtained by harvest method at interval of ten days from transplanting to hundred days and analyzed by , regression equation, determinant of matrix, and differentiation. The plot of total dry weight of leaves, stalk and roots per a plant vs. time forms a sigmoid curve and its function fitted logistic satisfactorily. Tobacco plant grows at an accelerated velocity. And growth velocity, symmetric about an inflection point, is proportional to biomass attained and to the difference between biomass attained and the maximum, and to the decrease according to the biomass. Of varieties and cropping systems, the most maximum velocity was 9.58g per day per plant in mulching cultivation of NC 2326 and maximum accelerated velocity was 264mg per $day^2$ per plant in Burley 21.

  • PDF

Study on Germination of Seed and Growth of Rhizome in Cymbidium goerinii in vitro (Cymbidium goeringii 종자의 in vitro 에서의 발아에 관한 기초적 연구)

  • EuiSooYoon
    • Korean Journal of Plant Resources
    • /
    • v.2 no.1
    • /
    • pp.235-241
    • /
    • 1989
  • The study was conducted to determine the Ms orthogonaL modia and the concentration of plant growth regulator for seed matura-tion and growth of rhizome from Cymbidium goeringii Germination waswell in dark condition, but the growth of rhizome was better un-der dark than under light condition in MS orthoTonal . Sucrose con-centration( 3 %) gave better results than higher ones(6%), andthe use of NAA(0.1 PPm) effect significant difference of seed ge-rmination .But the growth of rhizome was best in medium Containingsucrose concentration(3%) Ippm NAA and 1 PPm BA.

  • PDF