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Posttranscriptional regulation of RNA metabolism, includ-
ing RNA processing, intron splicing, editing, RNA export, 
and decay, is increasingly regarded as an essential step 
for fine-tuning the regulation of gene expression in eukar-
yotes. RNA-binding proteins (RBPs) are central regulatory 
factors controlling posttranscriptional RNA metabolism 
during plant growth, development, and stress responses. 
Although functional roles of diverse RBPs in living organ-
isms have been determined during the last decades, our 
understanding of the functional roles of RBPs in plants is 
lagging far behind our understanding of those in other 
organisms, including animals, bacteria, and viruses. How-
ever, recent functional analysis of multiple RBP family 
members involved in plant RNA metabolism and elucidation 
of the mechanistic roles of RBPs shed light on the cellular 
roles of diverse RBPs in growth, development, and stress 
responses of plants. In this review, we will discuss recent 
studies demonstrating the emerging roles of multiple RBP 
family members that play essential roles in RNA metabolism 
during plant growth, development, and stress responses.1 
 
 
INTRODUCTION  
 
Gene expression in living organisms is commonly regulated at 
both transcriptional and posttranscriptional levels, which is cru-
cial for the growth and development as well as the response 
and adaptation of the organisms to diverse environmental stim-
uli (Floris et al., 2009; Simpson and Filipowicz, 1996). Posttran-
scriptional regulation of gene expression includes RNA pro-
cessing, pre-mRNA splicing, and RNA export and decay, which 
is referred to as RNA metabolism and is central for various 
cellular processes in eukaryotes (Simpson and Filipowicz, 
1996). The regulation of RNA metabolism is carried out by ei-
ther direct or indirect binding of RNA-binding proteins (RBPs) to 
target RNAs. Determination of protein structures and functional 
characterization of RBPs in diverse organisms have revealed 
that RBPs harbor several conserved motifs and domains, in-
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cluding RNA-recognition motif (RRM), zinc finger motif, K ho-
mology (KH) domain, glycine-rich region, arginine-rich region, 
RD-repeats, and SR-repeats (Alba and Pages, 1998; Lorković 
and Barta, 2002). Plant genomes encode a variety of RBPs, 
which suggests the functional diversity of RBPs in plant growth, 
development, and stress responses (Lorković, 2009; Mangeon 
et al., 2010). In particular, those RBPs harboring an RRM at the 
N-terminus and a glycine-rich region at the C-terminus, thus 
referred to as glycine-rich RBP (GRP), zinc finger-containing 
GRP (RZ), cold shock domain protein (CSDP), and RNA hel-
icase (RH) have been implicated to play crucial roles in plant 
growth and stress responses (Jankowsky, 2011; Jung et al., 
2013; Mihailovich et al., 2010). Importantly, many nuclear-
encoded chloroplast- or mitochondria-targeted RBPs play piv-
otal roles in RNA metabolism in chloroplasts and mitochondria 
(Hammani and Giege, 2014; de Longevialle et al., 2010; Stern 
et al., 2010). Several recent studies have demonstrated that 
chloroplast-targeted proteins, including RH, chloroplast RNA 
splicing and ribosome maturation protein (CRM), S1 RNA-
binding domain protein (SDP), and pentatricopeptide repeat 
protein (PPR) participate in rRNA processing or intron splicing 
under normal and stress conditions (Gu et al., 2014; 2015; Han 
et al., 2015; Lee et al., 2014). Moreover, plant-specific PPRs 
are mainly targeted to chloroplasts or mitochondria and are 
involved in organellar RNA metabolism (Barkan and Small, 
2014; Brown et al., 2014; de Longevialle et al., 2010; Schmitz-
Linneweber and Small, 2008). In this review, we will focus on 
several RBP families, including GRP, RZ, CSDP, RH, CRM, 
SDP, and PPR, which play crucial roles in plant growth, devel-
opment, and stress responses. 

 
STRUCTURAL FEATURES OF RBPS  

 
RRM is the best-characterized RNA-binding motif found in all 
eukaryotes, and many RBPs possess one or two RRMs at 
the N-terminal region (Alba and Pages, 1998; Lorković and 
Barta, 2002). Typical RBPs contain auxiliary domains or mo-
tifs at the C-terminal region, including glycine-rich region, zinc 
finger motif, arginine-rich domain, RD-repeats, and SR-
repeats, which determine the binding specificity of RBPs to 
target RNAs (Nagai et al., 1995). Among those RBPs, GRPs 
are well-characterized in plants, and the genomes of Ara-
bidopsis thaliana and rice (Oryza sativa) harbor eight and six 
GRP genes, respectively (Lorković and Barta, 2002). GRPs 
contain a canonical RRM at the N-terminus and a glycine-rich 
region at the C-terminus (Fig. 1). GRPs harboring an addition-
al CCHC-type zinc finger in the glycine-rich region, referred to  
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as RZs, have been found in Arabidopsis and rice (Kim et al., 
2010a; 2010b; Mangeon et al., 2010). The genomes of Ara-
bidopsis and rice harbor three RZ genes, and AtRZs and 
OsRZs share approximately 40% of amino acid sequence 
similarity as well as the well-conserved CCHC-type zinc finger 
motif (Fig. 1).  

Cold shock domain (CSD) is found in Y-box proteins in eu-
karyotes and has the ability to bind RNA, single-stranded DNA, 
and double-stranded DNA (Graumann and Marahiel, 1998; 
Manival et al., 2001). Contrary to bacterial cold shock protein 
(CSP) that contains only the CSD, typical plant CSDPs harbor 
a C-terminal glycine-rich region interspersed with several 
CCHC-type zinc fingers, in addition to CSD at the N-terminus 
(Chaikam and Karlson, 2008; Karlson and Imai, 2003; Karlson 
et al., 2002) (Fig. 1). Four genes encoding CSDPs have been 
identified in Arabidopsis and rice genomes (Karlson and Imai, 
2003). RHs are classified into six superfamilies (SF1-SF6), and 
each RH has well-defined nine motifs (Q, I, Ia, Ib, II, III, IV, V, 
and VI) (Fig. 1). Among the RHs, DEAD-box RHs are the larg-
est family in SF2 helicases that possess the conserved Q motif 
and helicase activity. The Arabidopsis and rice genomes en-
code approximately 58 and 50 DEAD-box RHs, respectively 
(Mingam et al., 2004).  

CRM proteins were first investigated in prokaryotes, such as 
archaea and bacteria, and are divided into four subfamilies, 
depending on their sequence similarity and domain structures 
(Barkan et al., 2007). CRM domains are orthologous to the 
bacterial YhbY and are similar to KH RNA-binding domain that 
contains a highly conserved GxxG sequence in the loop of 
CRM domain (Barkan et al., 2007; Keren et al., 2008; Os-
theimer et al., 2002) (Fig. 1). Many CRM domain-containing 
proteins are targeted to chloroplasts or mitochondria and play 
important roles in the splicing of group I or group II introns in 
plants (Asakura et al., 2008; Kroeger et al., 2009; Ostersetzer 
et al., 2005; Zmudjak et al., 2013).  

SDPs possess the S1 RNA-binding domain that has RNA-
binding ability, which participates in RNA degradation and 
protein synthesis (Aliprandi et al., 2008; Delvillani et al., 2011). 
The E. coli S1 protein consists of six S1 domains folded into 
five-stranded antiparallel β barrel, which are involved in RNA 
binding (Bycroft et al., 1997) (Fig. 1). SDPs are widely present 
in diverse living organisms, but the functional roles of only a 
few SDPs have been investigated in plants, including RNA 
processing and degradation by RNase E/G type endoribonu-
clease and exosome subunit (AtRrp4p) and plastid transcrip-

tion (Chekanova et al., 2002; Jeon et al., 2012; Schein et al., 
2008). 

PPR proteins consist of tandem repeats of 35-amino acid 
motifs that fold into one pair of antiparallel α helices (Schmitz-
Linneweber and Small, 2008; Small and Peeters, 2000; Yin et 
al., 2013) (Fig. 1). Importantly, PPR proteins are abundant in 
land plants and mainly localized in organelles such as chloro-
plasts or mitochondria (de Longevialle et al., 2010; Lurin et al., 
2004; O'Toole et al., 2008; Saha et al., 2007). Plant PPR pro-
teins are divided into two major subfamilies of P- and PLS-
classes (P motif: 35 amino acids, L motif: 36 amino acids, and 
S motif: 31 amino acids) and are involved in RNA metabolism 
via recognizing specific sequences of RNA substrates (Bar-
kan and Small, 2014; Filipovska and Rackham, 2012; 
Schmitz-Linneweber and Small, 2008). Proteome analysis 
revealed that the Arabidopsis and rice genomes encode more 
than 450 and 650 PPR proteins, respectively, whereas pro-
karyotes and humans have less than 7 PPR proteins 
(Lightowlers and Chrzanowska-Lightowlers, 2008; Rackham 
and Filipovska, 2012).  

 
ROLES OF RBPS IN PLANT GROWTH AND  
DEVELOPMENT 

 
Recent years have seen an increase in the assessment of the 
functional roles of RBPs related to the regulation of flowering 
time and floral organ formation (Figure 2). FCA and FPA har-
boring two RRMs enhance flowering by preventing the expres-
sion of floral repressor FLOWERING LOCUS C (FLC) 
(Macknight et al., 1997; Lim et al., 2004). AtGRP7 and KH do-
main proteins such as PEPPER and FLOWERING LOCUS K 
promote flowering by inhibiting FLC expression (Lim et al., 
2004; Mockler et al., 2004; Ripoll et al., 2006). It was demon-
strated that AtGRP2 is involved in seed and flower develop-
ment (Fusaro et al., 2007). In addition, RH SWA3 is necessary 
for embryogenesis or embryo development in Arabidopsis (Liu 
et al., 2010a; Tripurani et al., 2011). Recently, the importance of 
RBPs in intron splicing and plant growth and development has 
been demonstrated. Among the seven minor spliceosomal 
small nuclear ribonucleoproteins that are involved in splicing of 
U12-type introns, U11/ U12-31K and U11/U12-65K proteins 
play essential roles in the splicing of many U12 introns, which is 
crucial for normal growth and development of dicot and mono-
cot plants (Jung and Kang, 2014; Kim et al., 2010c; Kwak et al., 
2012).  

Fig. 1. Schematic presentation of domain structures of 
RNA-binding proteins. Glycine-rich RNA-binding protein 
(GRP) harbors an RNA-recognition motif (RRM) at the 
N-terminal half and a glycine-rich region at the 
C-terminal half. RZ protein contains an RRM and a 
glycine-rich region interspersed with a CCHC-type zinc 
finger motif. Cold shock domain protein (CSDP) har-
bors an N-terminal cold shock domain (CSD) and a C-
terminal glycine-rich region interspersed with a 
CCHC-type zinc finger motif. DEAD-box RNA helicase 
(RH) consists of Q, I, II (DEAD), III, IV, V and VI do-
mains. Chloroplast RNA splicing and ribosome matura-
tion domain (CRM) protein contains a highly conserved 
GxxG sequence, and S1 domain containing-protein 
(SDP) harbors S1 RNA-binding domain. Pentatricopep-
tide repeat (PPR) protein contains tandem repeats of 
35-amino acid motifs. 
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Gene expression in chloroplasts and mitochondria is mainly 
regulated at posttranscriptional levels such as intron splicing, 
RNA editing, and RNA degradation, which is crucial for the 
biogenesis and function of chloroplasts and mitochondria (del 
Campo, 2009; Stern et al., 2010). Many recent studies have 
demonstrated that a variety of nuclear-encoded RBPs are tar-
geted to chloroplasts or mitochondria and play indispensable 
roles during RNA metabolism in these cellular organelles (del 
Campo, 2009; Stern et al., 2010). The chloroplast-targeted 
DEAD-box RHs, AtRH3, AtRH22, and AtRH36, and the mito-
chondria-targeted RH, PMH2, are associated with the splicing 
of group II introns and rRNA processing, which affects chloro-
plast or mitochondria biogenesis during the normal growth and 
development of plants (Asakura et al., 2012; Chi et al., 2012; 
Gu et al., 2014; Huang et al., 2010; Kanai et al., 2013; Kohler et 
al., 2010) (Fig. 2). RBPs harboring CRM domains, including 
Arabidopsis AtCRS1, AtCAF1, AtCAF2, AtCFM2, AtCFM3, and 
AtCFM4, are involved in the splicing of specific introns as well 
as the processing of 16S and 23S rRNAs (Asakura and Barkan, 
2006; 2007; Asakura et al., 2008; Lee et al., 2014), while the 
mitochondria-localized mCSF1 is involved in the splicing of 
multiple mitochondrial introns (Zmudjak et al., 2013) (Fig. 2). 
Importantly, most CRM proteins play crucial roles in intron splic-
ing or processing of the genes that are associated with photo-
systems or respiratory-related complexes, which affects em-
bryogenesis as well as chloroplast and mitochondrial biogene-
sis. Recently, several SDP proteins, including STF in Nicotiana 
benthamiana and SDP and SRRP1 in Arabidopsis thaliana, 
have been determined to play roles in plastid gene expression 
and rRNA processing during plant growth (Gu et al., 2015; Han 
et al., 2015; Jeon et al., 2012) (Fig. 2). Although PPR proteins 
are prevalent in land plants, and plant genomes harbor >400 
PPR protein-encoding genes, the importance and functional 
roles of only a small number of PPR proteins have been deter-
mined in Arabidopsis, rice, and maize. Maize PPR proteins 
PPR4 and PPR5 and Arabidopsis PPR proteins OTP51 and 
OTP70 are crucial for the splicing of chloroplast introns 
(Chateigner-Boutin et al., 2011; de Longevialle et al., 2008; 
Schmitz-Linneweber et al., 2006), while Arabidopsis PPR pro-
teins OTP43, BIR6, ABO5, and TANG2 are essential for splic-
ing of mitochondrial introns (des Francs-Small et al., 2014; 
Koprivova et al., 2010; Liu et al., 2010b; de Longevialle et al., 

2007) (Fig. 2). These results clearly demonstrate that PPRs 
play indispensable roles during organellar RNA metabolism, 
which is essential for normal growth and development of plants. 

 
DIVERSE ROLES OF RBPS IN ABIOTIC STRESS  
RESPONSES 

 
The involvement of RBPs in the response of plants to different 
environmental cues has been consistently demonstrated in 
diverse plant species (Lorković, 2009; Mangeon et al., 2010; 
Sachetto-Martins, 2000). In particular, the stress-responsive 
expression and functional roles of RBPs, including GRPs, RZs, 
CSDPs, RHs, CRMs, SDPs, and PPRs, have been extensively 
investigated in Arabidopsis, rice, wheat (Triticum aestivum), 
barely (Hordeum vulgare), and cabbage (Brassica rapa) under 
diverse environmental conditions (Fig. 2). Arabidopsis AtGRP2 
and AtGRP7 and rice OsGRP1 and OsGRP4 promote seed 
germination and seedling growth under low temperatures and 
confer freezing tolerance to Arabidopsis plants (Kim et al., 
2007a; 2008a; 2010a; Kwak et al., 2005). Interestingly, among 
the three RZ family members present in the Arabidopsis, rice, 
and wheat genomes, only AtRZ-1a, OsRZ2, and TaRZ2 affect 
seed germination and seedling growth at low and freezing tem-
peratures (Kim and Kang, 2006; Kim et al., 2005; 2010b; Xu et 
al., 2014). These studies demonstrate that certain family mem-
bers of GRPs and RZs play important roles in plant response to 
abiotic stresses.  

Plant CSDPs are highly induced in plants upon stress treat-
ment, especially by cold stress treatment. The Arabidopsis and 
rice genomes harbor four genes encoding CSDPs with different 
number of CCHC-type zinc fingers (Karlson and Imai, 2003; 
Karlson et al., 2002). Among the four CSDPs found in Ara-
bidopsis, AtCSDP2 and AtCSDP3 confer freezing tolerance to 
Arabidopsis (Kim et al., 2009; Sasaki et al., 2007) (Fig. 2). 
Moreover, rice and wheat CSDPs are involved in the cold adap-
tation process (Chaikam and Karlson, 2008; Nakaminami et al., 
2006). Ectopic expression of bacterial CSP in plants enhances 
cold adaptation in Arabidopsis, rice, and maize (Castiglioni et al., 
2008), suggesting functional conservation of CSDPs between 
plants and bacteria.  

DEAD-box RHs can catalyze the unwinding of the secondary 
structures in RNA molecules and thereby affect RNA metabo-

Fig. 2. Cellular functions of diverse RNA-binding proteins involved in 
RNA metabolism during growth, development, and stress response 
of plants. A variety of RNA-binding proteins (RBPs) play essential 
roles in RNA processing and pre-mRNA splicing in the nucleus, RNA 
export, mRNA degradation, and translational control in the cyto-
plasm. Moreover, diverse nuclear-encoded RBPs are targeted to 
mitochondria or chloroplasts and play indispensable roles in mito-
chondria or chloroplasts RNA metabolism, which is crucial for orga-
nellar biogenesis and function. Examples of RBPs whose functions 
in each cellular process have been experimentally determined are 
shown in parenthesis. Abbreviations such as CRM, GRP, PPR, RZ, 
RH, and SDP are described in Fig. 1. 
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lism in living organisms (Jankowsky, 2011). Although the plant 
genomes harbor more than 50 DEAD-box RHs (Mingam et al., 
2004), the functional roles of RHs have been determined for 
only a limited number of RH family members (Fig. 2). Arabidop-
sis AtRH38 enhances freezing tolerance (Gong et al., 2002; 
2005), and Arabidopsis STRS1 and STRS2 are involved in 
plant response to multiple abiotic stresses (Kant et al., 2007). 
Overexpression of Arabidopsis AtRH9 and AtRH25 delays seed 
germination under high salt conditions, whereas overexpres-
sion of AtRH25 enhances freezing tolerance (Kim et al., 2008b). 
Recently, it has been demonstrated that chloroplast-targeted 
AtRH3 affects intron splicing of chloroplast ndhA and ndhB 
genes under salt and cold stresses (Gu et al., 2014). The cold-
inducible RH, RCF1, is indispensable for pre-mRNA splicing 
and regulation of cold-responsive genes in plants (Guan et al., 
2013). Despite the fact that the functional roles of most RHs 
have not yet been determined, these results certainly suggest 
that DEAD-box RHs are essential in plant adaptation to diverse 
abiotic stresses.  

Several recent studies have demonstrated that chloroplast- 
or mitochondria-targeted RBPs play an important role in plant 
response to environmental stimuli as well as plant growth and 
development under normal conditions (Fig. 2). The chloroplast-
targeted CFM4 harboring a single CRM domain was deter-
mined to promote seed germination and seedling growth of 
Arabidopsis under cold and salt stress conditions (Lee et al., 
2014). The chloroplast-targeted S1 domain protein SRRP1 is 
involved in intron splicing of chloroplast tRNA and affects seed-
ling growth of Arabidopsis in the presence of abscisic acid 
(ABA) (Gu et al., 2015). Contrary to the ample studies elucidat-
ing the functional roles of PPRs in plant growth and develop-
ment under normal conditions, reports demonstrating the roles 
of PPRs in plant stress responses are severely limited. The 
chloroplast-targeted Arabidopsis PPR protein GUN1 enhances 
seedling development in the presence of sucrose and ABA, and 
the chloroplast-targeted rice PPR protein OsV4 is required for 
chloroplast development during the cold adaptation process 
(Cottage et al., 2010; Gong et al., 2014). Arabidopsis SOAR1 
and rice WSL have been determined to play important roles in 
plant response to multiple environmental stimuli, including ABA, 
drought, salt, sucrose, and cold (Jiang et al., 2015; Mei et al., 
2014; Tan et al., 2014). Overexpression of mitochondria-
targeted PPR40 in Arabidopsis was shown to promote seed 
germination and seedling growth of the plants under salt stress, 
whereas the ppr40 mutant showed enhanced sensitivity to 
abiotic stresses such as high salinity, oxidative stress, and ABA 
(Zsigmond et al., 2008; 2012). Moreover, it has been demon-
strated that Arabidopsis mitochondria-targeted PGN plays an 
essential role in plant defense against fungi as well as in plant 
tolerance against abiotic stress (Laluk et al., 2011). All of these 
reports emphasize that diverse chloroplast- or mitochondria-
targeted RBPs play an essential role in organellar RNA me-
tabolism, biogenesis, and function under stressful conditions as 
well as under normal growth conditions.  

 
CELLULAR ROLES OF RBPS AS RNA CHAPERONES 

 
Contrary to the increasing understanding of the importance and 
emerging roles of RBPs in plant growth, development, and 
stress responses, the mechanistic roles of RBPs in these cellu-
lar processes are largely unknown. However, several recent 
studies point to the cellular roles of RBPs as RNA chaperones 
in plant growth, development, and stress responses. During 
RNA metabolism, RNA molecules need to be correctly folded 
for normal functioning; however, RNA molecules are easily 

misfolded into non-functional structures due to their intrinsic 
kinetic and thermodynamic folding problems (Herschlag, 1995; 
Woodson, 2010). Both RNA chaperones and specific RBPs can 
help RNAs to achieve their active functional states (Rajkowitsch 
et al., 2007). RNA chaperones are nonspecific RBPs that facili-
tate RNA folding via structural rearrangement of misfolded 
RNAs (Rajkowitsch et al., 2007; Woodson, 2010). Compared to 
specific RBPs that bind to specific target RNAs, RNA chaper-
ones generally bind to various RNA substrates with low se-
quence specificity (Ivanyi-Nagy et al., 2005).  

Recent studies have demonstrated that RNA chaperones 
play crucial roles in the growth and development of living organ-
isms, including bacteria, viruses, animals, and plants (Kang et 
al., 2013). Some examples of RNA chaperones include viral 
nucleocapsid protein, long interspersed element-1 in animals, 
and several bacterial proteins such as Hfq, FinO, and Prop 
(Arthur et al., 2003; Chambers and Bender, 2011; Chaulk et al., 
2011; Martin, 2010). In addition, many E. coli DEAD-box RHs, 
including DeaD, RhlB, RhlE, and SrmBp, and yeast Mss116p 
function as an RNA chaperone in the splicing of mitochondrial 
group I and II introns (Huang et al., 2005; Mohr et al., 2002; 
2006). Interestingly, U11/U12-31K, the minor spliceosomal 
protein, harbors RNA chaperone activity and plays an essential 
role in the splicing of U12-type introns (Kim et al., 2010c; Kwak 
et al., 2012). Several recent findings have demonstrated that 
chloroplast-targeted proteins such as CFM4, RH3, SDP, and 
SRRP1 possess RNA chaperone activity and affect rRNA pro-
cessing and intron splicing in chloroplasts (Gu et al., 2014, 
2015; Han et al., 2015; Lee et al., 2014). These studies clearly 
indicate that many RBPs harboring RNA chaperone activity 
play essential roles in the regulation of RNA metabolism during 
plant growth and development. 

Involvement of RBPs with RNA chaperone activity in plant 
stress responses has been extensively investigated in diverse 
plant species. It has been determined that Arabidopsis 
AtCSDP1 and AtCSDP3, cabbage BrCSDP3, wheat CSDPs, 
and rice CSDPs harbor RNA chaperone ability, which is im-
portant for stress response and cold adaptation process in 
plants (Chaikam and Karlson, 2008; Choi et al., 2015; Kim et al., 
2007a, 2009). In addition, many GRP and RZ family members, 
including Arabidopsis AtGRP2 and AtGRP7, rice OsGRP1, 
OsGRP4 and OsGRP6, Arabidopsis AtRZ-1a, rice OsRZ2, and 
wheat TaRZ2, possess RNA chaperone activity during stress 
responses (Kim et al., 2005; 2007b; 2008a; 2010a; 2010b; Xu 
et al., 2013). Although the functional roles of many RHs in plant 
stress responses have been demonstrated, the RNA chaper-
one activity of only AtRH25 was determined in Arabidopsis 
under freeze stress conditions (Kim et al., 2008b). Considering 
that PPR proteins are widely present in land plants and are 
involved in chloroplast or mitochondrial RNA metabolism under 
normal and stress conditions, it would be interesting to deter-
mine whether any PPR proteins display RNA chaperone func-
tion in plants under diverse environmental stimuli.  

 
CONCLUSION 

 
Although studies on the functional roles of RBPs in growth, 
development, and stress response of plants are rapidly increas-
ing in recent years, our understanding of the cellular roles of 
RBPs during RNA metabolism in plants is far from sufficient. 
Considering that a variety of RBPs are targeted to chloroplasts 
and/or mitochondria, it would be of interest to determine the 
functional roles of these RBPs in organellar RNA metabolism 
during plant growth and development as well as plant stress 
responses. In particular, investigation of the RNA chaperone 
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activity of RBPs will provide clues about the cellular roles and 
action mechanism of RBPs during RNA metabolism in orga-
nelle biogenesis, plant development, and stress responses. As 
recent development of RNA-seq allows us to investigate the 
genome-wide analysis of RNAs in an organism, it would be of 
great interest to determine the fates and processing of RNAs in 
the mutants of particular RBPs involved in plant growth and 
stress responses. A major task for the future is to identify RNA 
targets and to understand how RBPs recognize substrate 
RNAs and how RBPs interact with other protein factors to regu-
late posttranscriptional RNA metabolism during plant growth 
and development under normal as well as stressful conditions. 
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