• Title/Summary/Keyword: Plant fresh weight

Search Result 1,156, Processing Time 0.031 seconds

Effect of LED as Light Quality on the Germination, Growth and Physiological Activities of Broccoli Sprouts (LED 광질이 브로콜리 새싹의 발아, 생장 및 생리활성에 미치는 영향)

  • Cho, Ja-Yong;Son, Dong-Mo;Kim, Jong-Man;Seo, Beom-Seok;Yang, Seung-Yul;Bae, Jong-Hyang;Heo, Buk-Gu
    • Journal of Bio-Environment Control
    • /
    • v.17 no.2
    • /
    • pp.116-123
    • /
    • 2008
  • This study was carried out to investigate into the effect of light-emitting diode (LED) for the light quality as a light source on the broccoli seed germination and the physiological activity of vegetable sprouts. We have also germinated seeds of the broccoli and applied LED as a light quality such as blue, green, red, white, yellow and red + blue color lights to their sprouts for 14 hours and kept dark for 10 hours at the temperature of $25^{\circ}C$ (day)/$18^{\circ}C$ (night). Broccoli sprouts were extracted by methanol and their physiological activities were examined. All broccoli seeds were germinated at 3 days after seeding regardless of the light color. Total sprout fresh weight were mostly became highest by 0.389g (10 plants) at 8 days after seeding when their sprouts were grown under blue color light. Total phenol compound contents in broccoli sprouts were extremely increased by $83.0\;mg{\cdot}L^{-1}$ under the white light, and total flavonoid contents were most much more by $72.6\;mg{\cdot}L^{-1}$ under the blue light. DPPH radical scavenging activity at $2,000\;mg{\cdot}L^{-1}$ were most highest by 93.5% in broccoli sprouts grown under the white light. Nitrite radical scavenging activity at the concentration of $500\;mg{\cdot}L^{-1}$ in sprout extracts were the most increased by 66.9% under the yellow light, and tyrosinase inhibition activity at $2,000\;mg{\cdot}L^{-1}$ in sprout extracts were by 14.5% under red light.

Growth of Potato Plantlets (Solanum tuberosum L. cv. Dejima) in Photoautotrophic Micropropagation System at Different Light Intensities and $CO_2$ Concentrations and Decision of Optimum Environment Conditions with Growth Stage by Modelling (광독립영양 기내 미세증식시스템에서 광강도 및 $CO_2$ 농도에 따른 감자 소식물체 생육분석 및 모델링에 의한 생육단계별 적정 환경조건 설정)

  • Son, Jung-Eek;Lee, Hoon;Oh, Myung-Min
    • Journal of Bio-Environment Control
    • /
    • v.18 no.1
    • /
    • pp.15-22
    • /
    • 2009
  • Adequate environment conditions with growth stage of potato were decided in a photoautotrophic micropropagation system using models. Total 20 day-period of growth were divided into three growth periods such as 6 (stage 1), 7(stage 2), and 7(stage 3) days. At the 1st stage, no significant differences were observed in the growth of potato plantlets at various photosynthetic photon flux density (PPFD) and $CO_2$ conditions. Considering damaged leaves, $80\;mmol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and ambient $CO_2$ level were adequate in this stage. At the 2nd stage, significant differences were partly observed in several growth characteristics including dry weight. Based on the dry matter model, over $240\;mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD was too high to cultivate potato plantlets at this stage due to the occurrence of damaged leaves. Considering both plant growth and energy efficiency, $160\;mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and $700\;mol{\cdot}mol^{-1}\;CO_2$ were selected for the adequate combination. At the 3rd stage, the biomass accumulation was significantly induced in potato plantlets under higher levels of PPFD and $CO_2$ concentration as suggested by increased fresh and dry weights. However, we could not find the saturated point with regard to dry matter due to continuous increase of dry mater even under maximum PPFD ($320\;mmol{\cdot}m^{-2}{\cdot}s^{-1})$. Thus, $320\;mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and $1800\;mol{\cdot}mol^{-1}\;CO_2$ were considered as the best choice at final stage in this study. In conclusion, even though the growth period of micropropagated potato plantlets was quite a short, favorable environmental conditions required at each growth stage were different. This technique could improve the growth of micropropagated plantlets compared to the conventional micropropagation and apply to other agriculturally important crops as well as potato in the future.

Morphological and Anatomical Response of Rice and Barnyardgrass to Herbicides under Various Cropping Patterns - I. Response to Pyrazolate (재배양식(栽培樣式)에 따른 수종(數種) 제초제(除草劑)에 대한 벼와 피의 해부형태적(解剖形態的) 반응차이(反應差異) - I. Pyrazolate에 대한 반응차이(反應差異))

  • Chon, S.U.;Guh, J.O.;Kuk, Y.I.
    • Korean Journal of Weed Science
    • /
    • v.15 no.1
    • /
    • pp.30-38
    • /
    • 1995
  • Soil-applied pre-emergence herbicide, pyrazolate(4-(2, 4-dichlorobenzoyl)-1, 3-dimethyl pyrazol-5-yl-p-toluene sulphonate) induced, twist effect of shoots of barnyardgrass under dry conditions, and etiolated leaf and stem of that under water condition. Plant height and root length of rice broadcast on soil surface were similar to the untreated control, but plant height of rice drilled in soil was more inhibited than root length as compared with the untreated control, while development of barnyardgrass seedling was severely inhibited at 20 days after application. The inhibition rate was much higher under water condition than under dry condition, but difference in rice and barnyardgrass did not abserve. However, growth of transplanted rice shown to increase to the untreated control. Shoot and root fresh weight of rice broadcast on soil surface was increase as compared with the untreated control, and that of rice drilled in soil was not affected whereas that of barnyardgrass was severely inhibited by 42% and 41%, respectively. Under dry condition at 20 days after pyrazolate application while root growth of rice broadcast on soil surface under water condition was deadly inhibited and development of barnyardgrass was almost completely inhibited. On the other hand, microscopic studies showed that constriction of mesophyll cell by destruction of chloroplast of barnyardgrass were occurred only under dry condition, whereas damage of rice and barnyardgrass under water and transplanting condition were not observed. Anatomical change in the meristernatic region of rice and barnyardgrass was not occurred, and similar to intact plant regardless of cropping patterns.

  • PDF

Effect of Ethylene Inhibitors on Plant Regeneration of Angelica keiskei Koidz (에틸렌 작용억제제(作用抑制劑)가 명일엽(明日葉)의 식물체(植物體) 재분화(再分化)에 미치는 영향(影響))

  • Lee, Joong-Ho;Kwon, Tae-Oh;Namkoong, Seung-Bak;Park, Byung-Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.5 no.2
    • /
    • pp.102-107
    • /
    • 1997
  • This study was carried out to increase the rate of plant regeneration from embryogenic callus of A. keiskei on MS medium supplemented with ethylene inhibitors. When leaflet, petiolule, and petiole of A. keiskei were cultured on MS medium supplemented with 2, 4-D, callus was well induced from leaflet segments at 2.0 ppm 2, 4-D. Shoot elongation of plantlets and shooting from embryogenic callus of A. keiskei were best on 2, 4-D-free medium supplemented with 2 ppm $AgNO_3$ or 10 ppm $CoCl_2{\cdot}6H_2O$, but it was suppressed on the medium containing 1 ppm 2, 4-D with $AgNO_3$ or $CoCl_2{\cdot}6H_2O$. Root elongation of plantlets from embryogenic callus was best on 2, 4-D-free medium supplemented with 1 ppm $AgNO_3$ or 5 ppm $CoCl_2{\cdot}6H_2O$, but rooting from embryogenic callus was none on the medium containing 1 ppm 2, 4-D with $AgNO_3$ or $CoCl_2{\cdot}6H_2O$. Fresh weight of plantlets from embryogenic callus was heaviest on 2, 4-D-free medium supplemented with 2 ppm of $AgNO_3$ or $CoCl_2{\cdot}6H_2O$, while it was heaviest on the medium containing 1 ppm 2, 4-D with 1 ppm $AgNO_3$ or 2 ppm $CoCl_2{\cdot}6H_2O$.

  • PDF

Growth and Useful Component of Angelica gigas Nakai under High Temperature Stress (고온 스트레스에 따른 참당귀의 생육 및 유용성분 특성)

  • Jeong, Dae Hui;Kim, Ki Yoon;Park, Sung Hyuk;Jung, Chung Ryul;Jeon, Kwon Seok;Park, Hong Woo
    • Korean Journal of Plant Resources
    • /
    • v.34 no.4
    • /
    • pp.287-296
    • /
    • 2021
  • Recently, the pace of global climate change has tremendously increased, causing extreme damage to crop production. Here, we aimed to examine the growth characteristics and useful components of Angelica gigas under extreme heat stress, providing fundamental data for its efficient cultivation. Plants were exposed to various experimental temperatures (28℃, 34℃, and 40℃), and their growth characteristics and content of useful components were analyzed. At the experimental site, the ambient and soil temperature were 19.38℃ and 21.34℃, ambient and soil humidity were 81.3 % and 0.18 m3/m3, solar radiation was 162.05 W/m2. Moreover, the soil was sandy-clay-loam (pH 6.65), with 2.66% organic matter, 868.52 mg/kg soil available phosphate, and 0.14% nitrogen. Values of most growth characteristics, including the survival rate (85%), plant height (38.66cm), and fresh and dry weight (41.3 g and 14.24 g), were the highest at 28℃. Although the highest content of useful components was observed at 34℃ (3.24%), there were no significant differences across temperatures. Growth characteristics varied across temperatures due to detrimental effects of heat stress, such as accelerated tissue aging, reduced photosynthesis, and delay of growth. Similar content of useful components across temperatures may be due to poor accumulation of anabolic products caused by impaired growth at extremely high temperatures.

Effects of Light Intensity, Light Quality and Photoperiod for Growth of Perilla in a Closed-type Plant Factory System (완전제어형 식물공장에서 광량과 광질, 광주기가 들깨의 생장에 미치는 영향)

  • Sul, Seonggwan;Baek, Youngtaek;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.180-187
    • /
    • 2022
  • In order to select suitable light in a plant factory, electric energy use efficiency and light use efficiency should be considered simultaneously to consider operating costs as well as quantitative and functional aspects. The growth characteristics, electric energy use efficiency, light use efficiency by light intensity, LED ratio, and photoperiod conditions were compared together. Light intensity is 60, 130, 230, and 320 µmol·m-2·s-1 treatments, and light quality is the mixing ratio of red light and blue light 8:2, 6:4, 4:6, and 2:8 treatments. Photoperiod is 9, 12, 15, and 18 hours treatments based on the daytime. In the light intensity experiment, the growth rate increased as the light intensity increased, but there was no significant difference in the light use efficiency. When comparing the leaf fresh weight per power consumption, only the 320 µmol·m-2·s-1 treatment group showed significantly low efficiency, and there was no significant difference in the other treatments, so 230 µmol·m-2·s-1, which produced the most, was the most efficient. In the light quality experiment, the ratio of red light and blue light was measured to be high at the same time as the growth rate and light use efficiency in RB 8:2, and there was no significant difference in color difference and flavonoids content, so a Red:Blue ratio of 8:2 was the most suitable condition. In the photoperiod experiment, the longer the photoperiod, the higher the growth rate. However, there was no significant difference in the growth rate over 12 hours of daytime, so 12 hours considering the light consumption efficiency was a suitable condition. Based on the above results, LED light environmental conditions for perilla growth in plant factories were light intensity, light quality, and day length of 230 µmol·m-2·s-1 or more, 8:2, and 12 hours or more, respectively.

Ameliorating Effect of $\textrm{Ca}({NO_3})_2$ or $\textrm{CaCl}_2$ on the Growth and Yield of NaCl-Stressed Tomato Grown in Plastic Pots Filled with Soil (NaCl 스트레스를 받은 토마토의 생육 향상을 위한 $\textrm{Ca}({NO_3})_2$$\textrm{CaCl}_2$ 처리 효과)

  • 강경희;권기범;최영하;김회태;이한철
    • Journal of Bio-Environment Control
    • /
    • v.11 no.3
    • /
    • pp.127-132
    • /
    • 2002
  • Enhanced supply of $Ca^{2+}$ as well as NO$_3$$^{[-10]}$ is known to restrict the uptake of the Na$^{+}$ and Cl$^{[-10]}$ ion and ameliorate growth under saline conditions. This test was conducted to investigate the ameliorating effects of Ca(NO$_3$)$_2$ or CaCl$_2$ on the growth and yield of NaCl-stressed tomato plants grown in plastic pot filled with soil. All treatments except for the control were supplied with 80 mM NaCl fur two weeks after transporting. The saline solutions with nutrient were supplemented with either 0, 10 or 20 mM Ca(NO$_3$)$_2$ and either 0, 10 or 20 mM CaCl$_2$ during harvesting time from two weeks after transporting. Ca(NO$_3$)$_2$ or CaCl$_2$ application enhanced the growth such as plant height, fresh weight, dry weight, fruit number, and fruit weight, and yield of NaCl-stressed tomato, and also their effects increased greater as concentration of supplemented Ca(NO$_3$)$_2$ or CaCl$_2$increased. Yield increased in 20 mM Ca(NO$_3$)$_2$ compared with the others except fur the control. Photosynthetic rate in Ca treatments was lower than that of the control, but higher than that of NaCl treatment. Leaf chlorophyll content was higher in Ca treatments compared with the others, especially in younger leaf, while that was not affected by concentration of supplemented Ca. Ca(NO$_3$)$_2$ or CaCl$_2$ supply increased the $K^{+}$ and $C^{2+}$ concentration of tomato plants, whereas the Na$^{+}$ transport to the leaves was inhibited. There was a strong increase in the $K^{+}$/Na$^{+}$ ratio in plants treated Ca(NO$_3$)$_2$, or CaCl$_2$. Cl$^{[-10]}$ content of plants was decreased by supplemental Ca(NO$_3$)$_2$ but Cl$^{[-10]}$ was increased in plants with CaCl$_2$compared with Ca(NO$_3$)$_2$. N concentration in plants of tomato increased with enhanced Ca(NO$_3$)$_2$ or CaCl$_2$supply, In conclusion, our study confirms the potential of Ca(NO$_3$)$_2$ or CaCl$_2$to alleviate NaCl-induced growth reductions in tomato.

Chemical Properties of Peunggang River and Effect of Irrigation Source on the Growth of Tomato and Cucumber (서낙동강 유역 평강천의 수질 특성과 용수원에 따른 토마토 및 오이의 생육)

  • Rhee, Han-Cheol;Cho, Myeung-Whan;Lee, Si-Young;Choi, Gyeong-Lee;Lee, Jae-Han
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.322-327
    • /
    • 2007
  • This study was conducted to analysis the chemical properties of Peunggang river and investigate the effect of irrigation sources on the growth of tomato and cucumber. The salt concentration in Peunggang river was high by $3.22{\sim}3.62dS{\cdot}m^{-1}s$ from March to May and lower gradually from April to February of next year, which was also lower in upper stream than in middle or low stream of Peunggang river. The growth such as plant height, fresh weight and dry weight in tomato and cucumber was better in drain water and tap water irrigation than in PR water (Peunggang river) irrigation. Mean fruit weight was highest in the tap water, and that of cucumber was no significance in the treatments. The number of setting fruit was lower in the PR water than in the treatments, and which was no significance between rain water and tap water. The yield of tomato and cucumber was found to be highest by 10,594 and 11,826 kg/10a in tap water, respectively and also lowest in the PR water among the three treatments. The fruit quality, soluble solids of tomato shows a tendency to increase in the PR water as compared with the other treatment, and the rate of blossom-end rote was higher by 13.6% in the PR water. T-N and P content of tomato and cucumber were no significance in the treatments. Ca content was lowest, but Na content highest in the PR water. It was thought that a rain water and tap water as alternative irrigation source of a PR water were proper.

Comparison of Growth Characteristics and Compounds of Ginseng Cultivated by Paddy and Upland Cultivation (논 . 밭재배에 따른 인삼의 생육 및 성분 특성 비교)

  • Lee, Sung-Woo;Kang, Seung-Won;Kim, Do-Yong;Seong, Nak-Sul;Park, Hee-Woon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.1
    • /
    • pp.10-16
    • /
    • 2004
  • This study was carried out to investigate the difference of growth characteristics and the content of root chemical components in four years old ginseng by paddy and upland cultivation at farmers' field in Korea. Proportions of silt, clay, liquid phase and porosity were higher in paddy soil than upland soil. The range of liquid phase was $17.5{\sim}19.5%$ in paddy and $7.0{\sim}12.8%$ in upland during growth period. EC and the other contents of OM, $NO_3^-,\;K_2O$, and Mg in paddy soil were higher than those of upland soil, while the contents of $P_2O_5$ and Ca were less than those of upland soil. The levels of chemical components of tested soil exceeded recommended range in EC, $NO_3^-$ and Ca of paddy soil, and in $P_2O_5$ and Ca of upland soil. Stem length, fresh root weight and total dry weight per plant in paddy were greater than those of upland. Root weight in paddy-ginseng showed a great increase on September, while it was not increased in upland because of early defoliation. Net assimilation rate and crop growth rate by paddy and upland cultivation showed distinct differences on May and September, and those of paddy-ginseng were higher than those of upland-ginseng. Yield and ratio of red-colored root showed no significant difference by paddy and upland cultivation, while significant differences were observed in diameter and length of primary root, contents of crude saponin and 50% ethanol extracts of primary root, and water content of root. Hardness of primary root showed no significant difference by paddy and upland cultivation until August, but it showed distinct difference on September, at which the hardness in upland cultivation was drastically decreased.

Greenhouse Environment and Growth of Green Pepper (Capsicum annuum L.) in Greenhouse Covered with CEM BIO Film (CEM BIO Film 피복시설의 환경특성과 풋고추 생육)

  • Chun, Hee;Kim, Kyung-Je;Kwon, Young-Sam;Kim, Hyun-Hwan;Lee, Si-Young
    • Journal of Bio-Environment Control
    • /
    • v.9 no.3
    • /
    • pp.161-165
    • /
    • 2000
  • Spectroradiometric light transmittance from 300 to 1,100nm in the greenhouse covered with the CEM BIO polyethylene film was greater than that in the greenhouse covered with polyethylene film (control). As a whole, solar radiation transmittance into greenhouse was a half level, due to shades caused by double layer covering, frame and equipment. Net radiation energy emitted throughout surface of the greenhouse covered with CEM BIO polyethylene film was 5,424.5W.m$^{-2}$ , which was lower by 2.9% as compared to that of the greenhouse covered with polyethylene film. Photosynthetically active radiation from 400 to 700nm of the greenhouse covered with CEM BIO polyethylene film was 3,861.2W.m$^{-2}$ , which was higher by 3.8% as compared to hat of the greenhouse covered with polyethylene film. Accumulated minimum air temperature from Oct. 7, 1997 to Oct. 16, 1997 of the greenhouse covered with CEM BIO polyethylene film was 100.5$^{\circ}C$, which was higher by 2.5$^{\circ}C$ as compared to that of the greenhouse covered with polyethylene film. As results, height, stem diameter, leaf count, leaf area, fresh weight and dry weight of green pepper plants and canopy production structure measured at 30 days after transplanting were enhanced. Mean fruit weight n the greenhouse covered with CEM BIO polyethylene film was 11.28 g and 1.25 g greater as compared to that in the greenhouse covered with polyethylene film, due to increased fruit diameter and flesh thickness. Percent marketable fruits produced in the greenhouse covered with CEM BIO polyethylene film were 96.1%, and was greater by 2.7% thant that of the greenhouse covered with polyethylnee film due to decreased infection, sterility, severe curve and twisted fruits. The green pepper yield of the greenhouse covered with CEM BIO polyethylene film from Nov. 19, 1997 to Feb. 3, 1998 was greater by 974 kg per hectare than that of the greenhouse covered with polyethylene film, but the total fruit had no difference.

  • PDF