• Title/Summary/Keyword: Plant essential oil

Search Result 292, Processing Time 0.023 seconds

Repellency of the Constituents of Caraway Oil, Carum carvi against, Tetranychus urticae (점박이응애에 대한 Caraway Oil의 기피활성)

  • Yu Jeong-Su;Bae Jeong-Sook;Shin Dong-Ku;Kim Gil-Hah
    • Korean journal of applied entomology
    • /
    • v.44 no.2
    • /
    • pp.161-164
    • /
    • 2005
  • Essential oils of three plants (caraway oil, hyssop oil and lime oil) were screened for repellency against Tetranychus urticae female adults in the lab condition. Among them, caraway oil (Carum carvi) showed $92.2\%$ repellency against female adults at 1,000 ppm concentration. Through the constituent analysis using GC and GC/MS, we confirmed that the two main constituents were carvone $(73.3\%)$ and limonene (26.7). Limonene showed 87.8 and $83.1\%$ repellency against adult females at 1,000 and 100 ppm concentrations, respectively.

Antibacterial Action against Food-Borne Pathogens by the Volatile Flavor of Essential Oil from Chrysanthemum morifolium Flower (국화 꽃 휘발성 향기성분의 식중독균에 대한 항균 작용)

  • Jang, Mi-Ran;Seo, Ji-Eun;Lee, Je-Hyuk;Chung, Mi-Sook;Kim, Gun-Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.2
    • /
    • pp.154-161
    • /
    • 2010
  • The aim of this study was to investigate antibacterial activities of essential oil from C. morifolium against four Grampositive bacteria and six Gram-negative bacteria. The antibacterial activity of the oils was determined by agar-well diffusion assay, minimum inhibitory concentration(MIC), and minimum bactericidal concentration(MBC). Essential oil of C. morifolium had a large inhibition zones especially against Salmonella enterica(21 mm) and Bacillus cereus(19 mm). Essential oil of C. morifolium generally showed higher antibacterial activity against Gram-positive bacteria than Gram-negative bacteria. MIC of essential oil from C. morifolium was 5 ${\mu}g/m{\ell}$ against ten food-borne pathogens. MBC values were determined to be from 5 to 20 ${\mu}g/m{\ell}$ against eight bacteria except Salmonella choleraesuis and Listeria monocytogenes. Therefore, the essential oil of C. morifolium and its components have a potent antibacterial activity against food-borne pathogens, and is expected to be used as a novel food preservative.

Chemical Composition of Cirsium japonicum var. ussurience Kitamura and the Quantitative Changes of Major Compounds by the Harvesting Season (엉겅퀴 정유의 화학적 조성 및 수확시기에 따른 주요 화합물 함량 변화)

  • Choi, Hyang-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.3
    • /
    • pp.327-334
    • /
    • 2016
  • This study investigated the chemical composition of Cirsium japonicum var. ussurience Kitamura essential oil and the quantitative changes of major volatile flavor compounds according to the harvesting season. The essential oils obtained by the method of hydrodistillation extraction from aerial parts of C. japonicum var. ussurience Kitamura were analyzed by GC and GC-MS. Sixty-four volatile flavor compounds were identified in the essential oil from C. japonicum var. ussurience Kitamura harvested in May 2012; hexadecanoic acid (49.31%) was the most abundant compound, followed by 6,10,14-trimethyl-2-pentadecanone (13.72%), phytol (13.40%) and 9-hexadecenoic acid (4.16%). Eighty-three compounds were identified in the essential oil from the plant harvested in October 2012; phytol (40.56%), hexadecanoic acid (17.69%), 6,10,14-trimethyl-2-pentadecanone (13.71%), and caryophyllene oxide (4.15%) were the most abundant compounds. Types and levels of volatile compounds from different harvesting seasons varied. The essential oil composition of C. japonicum var. ussurience Kitamura harvested in the spring and autumn was characterized by higher contents of aliphatic fatty acid, diterpene and sesquiterpene, respectively.

Chemical Composition and Biocontrol Activity of Different Essential Oils against Soil-Borne Fungal Pathogens

  • Yusuf Akdeniz;Tuba Genc Kesimci
    • The Plant Pathology Journal
    • /
    • v.40 no.2
    • /
    • pp.192-204
    • /
    • 2024
  • In this study, the efficacy of the essential oil of Mentha longifolia, Achillea arabica and Artemisia absinthium plants were evaluated against important soil-borne fungal pathogens as Verticillium dahliae, Rhizoctonia solani, and Fusarium oxysporum. Essential oils were obtained from plants by hydrodistillation method and the chemical components of essential oils were determined by analyzing by gas chromatography-mass spectrometry. The main components found as piperitone oxide (13.61%), piperitenone oxide (15.55%), pulegone (12.47%), 1-menthone (5.75%), and camphor (5.75%) in M. longifolia, á-selinene 13.38%, camphor 13.34%, L-4-terpineneol 8.40%, (-)-á-Elemene 7.01%, 1,8-cineole 4.71%, and (-)-spathulenol 3.84% in A. arabica, and á-thujone (34.64%), 1,8-cineole (19.54%), pulegone (7.86%), camphene (5.31%), sabinene (4.86%), and germacrene-d (3.67%) in A. absinthium. The antifungal activities of the oils were investigated 0.05, 0.1, 0.25, 0.5, 1.00, and 2.00 μl/ml concentrations with the contact effect method. M. longifolia oil (1.00 and 2.00 μl/ml) has displayed remarkable antifungal effect and provided 100% inhibition on mycelial growth of V. dahliae, R. solani and F. oxysporum. The results obtained from this study may contribute to the development of new alternative and safe methods against soil-borne fungal pathogens.

Analysis of Essential Oil from Perennial Herbaceous Plants (다년생 초본류의 향기성분 분석)

  • Chung, Ha-Sook;Park, Jun-Yeon;Ahn, Young-Hee;Lee, Sang-Hyun;Shin, Kuk-Hyun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.3
    • /
    • pp.179-186
    • /
    • 2009
  • The chemical composition of essential oil from the perennial herbaceous plants (Houttuynia cordata, Filipendula glaberrima, Peucedanum japonicum, and Ainsliaea acerifolia) was determined by GC/MS spectrometric analysis with the aid of NBS, Wiley Library and RI indice searches. The major constituents identified were $\alpha$-phellandrene (18.97%), $\gamma$-terpinene (12.32%), decanal (8.72%), 1-decanol (10.92%), decanoic acid (12.12%), and 2-undecanone (12.32%) from H. cordata, farnesol (2.83%), l-$\alpha$-terpineol (2.72%), benzenmethanol (2.03%), (Z)-3-hexen-1-ol (4.32%), and T-muurolol (2.07%) from F. glaberrima, $\alpha$-phellandrene (14.25%), endobornyl acetate (3.84%), heptanal (47.52%), octanal (2.65%), (E,E)-2,4-decadienal (2.75%), and octanoic acid (4.52%) from P. japonicum, and geyrene (9.74%), $\beta$-cubebene (11.15%), berkheyaradulen (22.32%), $\beta$-elemene (6.21%), (-)-A-selinene (4.85%), benzaldehyde (4.52%), and benzenacetaldehyde (3.40%) from A. acerifolia.

Environment Friendly Control of Gray Mold, a Ginseng Storage Disease Using Essential Oils (정유를 이용한 환경친화적 수삼 저장병 방제)

  • Kim, Jung-Bae;Kim, Nam-Kyu;Lim, Jin-Ha;Kim, Sun-Ick;Kim, Hyun-Ho;Song, Jeong-Young;Kim, Hong-Gi
    • Research in Plant Disease
    • /
    • v.15 no.3
    • /
    • pp.236-241
    • /
    • 2009
  • The objective of this study was to find an environment friendly method of ginseng storage disease control using a natural plant extract. Essential oil was evaluated in terms of its antifungal ability against a variety of ginseng storage pathogens, and a variety of essential oils was conducted in order to assess the possibility of applying them as a component of a disease control strategy. Direct treatment with essential oil was demonstrated to exert a ginseng storage control effect. Methyl eugenol and thymol were shown to exert a mycelial growth inhibition effect of 80% on PDA media, using a paper disc containing 200 ppm of essential oil against Botrytis cinerea. The application of direct methyl eugenol treatment to ginseng resulted in a profound control effect. Both spray and dipping treatment of each methyl eugenol as well as thymol, evidenced a disease develoment of 10-20% as compared with the over 80% observed from all non-treated packages. Methyl eugenol in the large packages resulted in a disease index of 0.60 in the two essential oil treatments and also a small diseased area, as compared with the disease index of 1.65 and the wide diseased area observed in the non-treatment groups. Treatment with a mixture (methyl eugenol + thymol) in the synergistic effect test resulted in a relatively wide diseased area, as no discernable synergistic effect was detected. Methyl eugenol and thymol can be utilized as control agents in an environmentally friendly ginseng storage treatment, owing to the avirulent and clear effects detected in this study. In particular, ginseng must be ingested when fresh, and this is why a product for the control of ginseng storage diseases is so necessary.

Acaricidal activity and chemical composition of essential oil derived from the Albizziae julibrissin barks

  • Park, Jun-Hwan;Lee, Sang-Guei;Kim, Jeong-Moon;Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.2
    • /
    • pp.125-128
    • /
    • 2016
  • The chemical compositions of the essential oil extracted from Albizziae julibrissin barks were analyzed by Gas chromatography-Mass spectrometry spectrometry. Fourteen components were identified, representing 89.23 % of the total oil composition. The analysis of the essential oil revealed that the essential oil contains 14 compounds, accounting for 89.23 % of the total oil. Hexanoic acid was the principal component (41.43 %) of the essential oil, followed by 4,4,6-trimethyl-cyclohex-2-en-1-ol (11.16 %), palmitic acid (9.00 %), 2-pentylfuran (5.66 %), 2-butyl-2-octenal (4.12 %), linoleic acid (3.10%), amyl hexanoate (3.01%), (E,E)-2,4-decadienal (2.49 %), 2-hexylthiophene (2.47 %), caprylic acid (2.13 %), ${\delta}-undecalactone$ (1.52 %), heptanoic acid (1.27 %), 3,5-octadien-2-ol (0.99 %), and 2-octenal (0.88 %). The acaricidal activity of the A. julibrissin oil was tested against Dermatophagoides farina, D. pteronyssinus and Tyrophagus putrescentiae by the fumigant bioassay. Based on the $LD_{50}$ values, the essential oil exhibited strong acaricidal activities against D. farinae ($LD_{50}$, $4.88{\mu}g/cm^3$), D. pteronyssinus ($2.44{\mu}g/cm^3$), and T. putrescentiae ($1.22{\mu}g/cm^3$). These results indicate that A. julibrissin oil could be a source of acaricidal agents for mite control.

In vitro Antiinflammatory Activity of the Essential oil Extracted from Chrysanthemum sibiricum in Murine Macrophage RAW 264.7 Cells

  • Lee, Kyung-Tae;Kim, Ryung-Kyu;Ji, Sa-Young;Shin, Kyoung-Min;Choi, Jong-Won;Jung, Hyun-Ju;Park, Hee-Juhn
    • Natural Product Sciences
    • /
    • v.9 no.2
    • /
    • pp.93-96
    • /
    • 2003
  • This research was undertaken to find the in vitro inflammatory action of the essenetial oil (CS-oil) extracted from Chrysanthemum sibiricum (Compositae) herbs. We investigated the effects of the CS-oil not only on the formation NO, $PGE_2$, and $TNF-{\alpha}$ but also on inducible nitric oxide synthase and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-induced murine macrophage RAW 264.7 cells. The data obtained were consistent with the modulation of iNOS enzyme expression. A similar fashion was also observed when LPS-induced $PGE_2$ release and COX-2 expression were tested. The significant inhibitory effects were shown in concentration-dependent manners. In addition, CS-oil also mildly but significantly reduced the formation of TNF-a. These findings support the application of CS-oil as an antiinflammatory essential oil.

Composition of the Essential Oil of Chrysanthemum sibiricum, and Cytotoxic Properties

  • Lee, Kyung-Tae;Choi, Jong-Won;Park, Jong-Hee;Jung, Won-Tae;Jung, Hyun-Ju;Park, Hee-Juhn
    • Natural Product Sciences
    • /
    • v.8 no.4
    • /
    • pp.133-136
    • /
    • 2002
  • GC-MS data on the volatile oil (CS-oil) of Chrysanthemum sibiricum herbs led to the identification of 2-methoxythioanisol, (+)-camphor, geraniol, citral, thymol, eugenol, ${\beta}-caryophyllene$ oxide, ${\beta}-caryophyllene$, ${\beta}-eudesmol$, juniper camphor together with an unknown substance using the mass spectral library and literature data. CS-oil exhibited significant cytotoxicities on HL-60 $(IC_{50}\;12.5\;{\mu}g/ml)$ cell and mild on HepG-2 cell $(IC_{50}\;102.4\;{\mu}g/ml)$, though the antioxidant ability was found not to be potent $(IC_{50}\;97.2\;{\mu}g/ml)$. However, the component eugenol showed potent antioxidant ability but mild cytotoxicity. Methyleugenol with no phenolic OH showed less potent cytotoxic and antioxidative properties than eugenol suggesting that phenolic OH plays an important role for the cytotoxic and antioxidant abilities. The oil-pretreatment prevented lipid peroxidation induced by bromobenzene in the rat. Therefore, it was demonstrated that CS-oil could be a cytotoxic agent with antioxidant properties.

Insecticidal Activity of Essential Oils against Larvae of Culex pipiens pallens (빨간집모기(Culex pipiens pallens) 유충에 대한 식물오일의 살충효과)

  • Kang, Shin-Ho;Kim, Min-Ki;Seo, Dong-Kyu;Kim, Gil-Hah
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.1
    • /
    • pp.43-49
    • /
    • 2006
  • Larvicidal activity of 34 plant essential oils were tested against the 4th instar larvae of Culex pipiens pallens. Among them, six oils (basil, fennel, caraway seed, lime, thyme red, and thyme white) showed more than 80% mortality at 100 mg $litre^{-1}$ concentration. GC and GC-MS analyses of the six essential oils and bioassay of their components revealed that anethole (a major component of fennel and basil oil) and (+)-limonene (a major component of caraway seed and lime oil) showed higher larvicidal activities than others. In addition to the above two components, ${\alpha}$-phellandrene, p-cymene, $\gamma$-terpinene, ${\beta}$-pinene, and thymol showed higher larvicidal activity than Bt product.