• Title/Summary/Keyword: Plant defence

Search Result 49, Processing Time 0.024 seconds

Evidence for Volatile Memory in Plants: Boosting Defence Priming through the Recurrent Application of Plant Volatiles

  • Song, Geun Cheol;Ryu, Choong-Min
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.724-732
    • /
    • 2018
  • Plant defence responses to various biotic stresses via systemic acquired resistance (SAR) are induced by avirulent pathogens and chemical compounds, including certain plant hormones in volatile form, such as methyl salicylate and methyl jasmonate. SAR refers to the observation that, when a local part of a plant is exposed to elicitors, the entire plant exhibits a resistance response. In the natural environment, plants are continuously exposed to avirulent pathogens that induce SAR and volatile emissions affecting neighbouring plants as well as the plant itself. However, the underlying mechanism has not been intensively studied. In this study, we evaluated whether plants "memorise" the previous activation of plant immunity when exposed repeatedly to plant defensive volatiles such as methyl salicylate and methyl jasmonate. We hypothesised that stronger SAR responses would occur in plants treated with repeated applications of the volatile plant defence compound MeSA than in those exposed to a single or no treatment. Nicotiana benthamiana seedlings subjected to repeated applications of MeSA exhibited greater protection against Pseudomonas syringae pv. tabaci and Pectobacterium carotovorum subsp. carotovorum than the control. The increase in SAR capacity in response to repeated MeSA treatment was confirmed by analysing the defence priming of the expression of N. benthamiana Pathogenesis-Related 1a (NbPR1a) and NbPR2 by quantitative reverse-transcription PCR compared with the control. We propose the concept of plant memory of plant defence volatiles and suggest that SAR is strengthened by the repeated perception of volatile compounds in plants.

Plant Defence Responses: Current Status and Future Exploitation

  • Yun, Byung-Wook;Gray J, Loake
    • Journal of Plant Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • Plants have developed a sophisticated battery of defence responses to protect themselves against attempted pathogen ingress. Manipulation of these defence mechanisms may provide significant opportunities for crop improvement. While plant resistance genes have had a long service history in plant breeding, they possess significant limitations. Recent advances are now providing significant insights into strategies designed to increase the field durability of this class of genes. Hypersensitive cell death is a common feature underlying the deployment of plant defence responses against biographic pathogens. In contrast, necrotrophic pathogens actively kill plant cells. Recently, transgenic plants have been developed that either promote or suppress cell death, providing resistance against either biotrophic or necrotrophic pathogens respectively. Methyl-jasmonate is a key signalling molecule in the establishment of resistance against some fungal pathogens. Increasing the concentration of this molecule in plant cells has been shown to increase resistance against Botrytis cineria, without significantly imparting plant growth or development. Due to the multifarious infection strategies employed by plant pathogens, how-ever, it is unlikely a single commercial product will prove a panacea for global disease control. Future stategies will more likely entail an integrated disease management approach.

Message in a Bottle: Chemical Biology of Induced Disease Resistance in Plants

  • Schreiber, Karl;Desveaux, Darrell
    • The Plant Pathology Journal
    • /
    • v.24 no.3
    • /
    • pp.245-268
    • /
    • 2008
  • The outcome of plant-pathogen interactions is influenced significantly by endogenous small molecules that coordinate plant defence responses. There is currently tremendous scientific and commercial interest in identifying chemicals whose exogenous application activates plant defences and affords protection from pathogen infection. In this review, we provide a survey of compounds known to induce disease resistance in plants, with particular emphasis on how each compound was originally identified, its putative or demonstrated mechanism of defence induction, and the known biological target(s) of each chemical. Larger polymeric structures and peptides/proteins are also discussed in this context. The quest for novel defence-inducing molecules would be aided by the capability for high-throughput analysis of candidate compounds, and we describe some issues associated with the development of these types of screens. Subsequent characterization of hits can be a formidable challenge, especially in terms of identifying chemical targets in plant cells. A variety of powerful molecular tools are available for this characterization, not only to provide insight into methods of plant defence activation, but also to probe fundamental biological processes. Furthermore, these investigations can reveal molecules with significant commercial potential as crop protectants, although a number of factors must be considered for this potential to be realized. By highlighting recent progress in the application of chemical biology techniques for the modulation of plant-pathogen interactions, we provide some perspective on the exciting opportunities for future progress in this field of research.

Antagonistic Potential of Native Trichoderma viride Strain against Potent Tea Fungal Pathogens in North East India

  • Naglot, A.;Goswami, S.;Rahman, I.;Shrimali, D.D.;Yadav, Kamlesh K.;Gupta, Vikas K.;Rabha, Aprana Jyoti;Gogoi, H.K.;Veer, Vijay
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.278-289
    • /
    • 2015
  • Indigenous strains of Trichoderma species isolated from rhizosphere soils of Tea gardens of Assam, north eastern state of India were assessed for in vitro antagonism against two important tea fungal pathogens namely Pestalotia theae and Fusarium solani. A potent antagonist against both tea pathogenic fungi, designated as SDRLIN1, was selected and identified as Trichoderma viride. The strain also showed substantial antifungal activity against five standard phytopathogenic fungi. Culture filtrate collected from stationary growth phase of the antagonist demonstrated a significantly higher degree of inhibitory activity against all the test fungi, demonstrating the presence of an optimal blend of extracellular antifungal metabolites. Moreover, quantitative enzyme assay of exponential and stationary culture filtrates revealed that the activity of cellulase, ${\beta}$-1,3-glucanase, pectinase, and amylase was highest in the exponential phase, whereas the activity of proteases and chitinase was noted highest in the stationary phase. Morphological changes such as hyphal swelling and distortion were also observed in the fungal pathogen grown on potato dextrose agar containing stationary phase culture filtrate. Moreover, the antifungal activity of the filtrate was significantly reduced but not entirely after heat or proteinase K treatment, demonstrating substantial role of certain unknown thermostable antifungal compound(s) in the inhibitory activity.

A Study on Properties of HTPB/AP/Al Propellant to Contents of Bonding Agents (결합제 함량에 따른 HTPB/AP/Al 추진제의 특성 연구)

  • Lee, Youngwoo;Ha, Sura;Jang, Myungwook;Kim, Taekyu;Lee, Jungjoon;Son, Hyunil
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.3
    • /
    • pp.47-52
    • /
    • 2017
  • The propellant tile and crack which account for the greatest proportion of solid rockets are profoundly affected by viscosity and mechanical properties of solid propellant. In this paper HTPB/AP/Al system propellant has been researched for the viscosity, mechanical properties and burning properties with type and contents of bonding agents. The viscosity of propellant was changed significantly depending on the type and contents of bonding agents, and mechanical properties of HTPB/AP/Al system propellant were also varied. Considering both lower viscosity and stable mechanical properties, the optimum type and contents of bonding agents can be identified as the main factors to the HTPB/AP/Al system propellant.

The Study of Propellant Characteristic for Low Carbon & High Nitrogen Oxidizer (저탄소 고질소 산화제 적용 추진제 특성 연구)

  • Won, Jong-ung;Choi, Sung-han;Park, Young-chul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.26-31
    • /
    • 2017
  • Environmental problem of the solid propellants is an issue of growing importance in solid rocket. For examples, ammonium perchlorate (AP) as an solid propellants oxidizer could create a poisonous gas and atmospheric pollutions, such as HCl. Among the several oxidizers, N-guanylurea dinitramide (GuDN) is an effective candidate substance for eco-friendly oxidizer, which has high performance, pressure exponent, and eco-friendly smog during combustion for solid propellant of gas generator. In this paper, the theoretical analysis of characteristics as a gas generator propellant, propellant manufacturing processability, propellant hardness properties and combustion characteristics were studied.