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Introduction

Plants have evolved a plethora of diverse defence mechanisms
in response to pressure from microbial pathogens. Preformed
structural and chemical barriers form the first line of defence,
superimposed upon these, however, are a battery of inducible
responses, which are engaged following the recognition of
pathogen avirulence proteins by the products of plant resistance
(R) genes. Over the last few years our appreciation of the biology
underlying the deployment of these defence mechanisms has
increased significantly. These fundamental studies are priming the
development of biotechnological approaches towards effective
disease control. To date, however, no transgenic plants exhibiting
disease resistance are commercially available. This reflects the
inherent complexity of defence signalling networks and the
extensive diversity of pathogen infection mechanisms. As our
appreciation of the biology of plant:pathogen interactions
increases, however, such crops are likely to become a reality. Here
we highlight selected exampies of biotechnological strategies that
could be developed for crop protection. Furthermore, we briefly
outline the biology underpinning these approaches.

Plant resistance genes

Plant R proteins have evolved to recognise microbial effector
molecules, which in some cases, function to promote disease
development (Chen et al., 2000). To date five classes of R genes
have been identified. The Xa21 and Cf-X proteins possess both
transmembrane domains and extracellular leucine rich repeats
(LRRs), which are thought to mediate either protein:protein or
protein:ligand interactions (Kajava, 1998). Furthermore, LRRs
may also negatively regulate R protein signalling in the absence of
pathogen (Hwang et al., 2000). In contrast, the tomato Pto gene
encodes a cytoplasmic serine/threonine kinase (Martin et al.,
1993). Receptor-like kinases, such a FLS2 constitute another class,
which contain a cytoplasmic kinase domain in addition to a

transmembrane domain and extracellular LRRs (Gomez-Gomez
and Boller, 2000). The RPW8 protein is the prototypic member of
the latest class to be uncovered, consisting of a putative signal
anchor at its N-terminus in addition to a coiled-coil (CC) domain
(Xiao et al., 2001). The largest class of R proteins, of which there
are at least 150 members in Arabidopsis, possess a nucleotide
binding site (NBS) and C-terminal LRRs. These proteins can be
further divided into two subclasses, dependent upon their
possession of either a domain of homology to the Drosophila Toll
and mammalian interleukin receptor, designated TIR, or a CC
domain, within their N-terminus. Interestingly, these NBS LRR
proteins are similar to the Nod proteins of mammalian cells, which
undertake a pivotal function in the development of innate
immunity (Inchara et al., 2001). Nod proteins have been shown to
recognise conserved features of potential microbial aggressors,
termed pathogen associated molecular patterns (PAMPs).
However, unlike NBS LRR genes in plants, evolution has not
driven a massive expansion in this gene family. It has recently
emerged that CC NBS LRR and TIR NBS LRR proteins signal
via distinct pathways. While CC NBS LRR proteins require
NDR1, TIR NBS LRR protein signalling is dependent on EDS1
function (Aarts et al., 1998).

While plant R genes have a long and distinguished service in the
field, the resistance conveyed, however, is typically not durable.
Pathogen races that circumvent the action of a given R gene
rapidly predominate in the population. Thus, there is significant
cost to breeders in continually creating new varieties. The function
of some R proteins, however, may endure under field conditions
(Kearney and Staskawicz, 1990). Presumably, this reflects the high
fitness penalty for the pathogen associated with overcoming the
specific R gene function. Currently, there is no straightforward
way to predict R gene durability. Field studies in this area,
however, are now beginning to provide a platform for more
rationale R gene deployment (Vera Cruz et al., 2000). Recent work
has also highlighted the potential benefits of varietal mixtures (Zhu
et al., 2000). However, these mixtures are heterogeneous for other
important traits such as time to seed set and therefore may not
prove economically viable. The Mla locus consists of an alleic
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series. The recent isolation of the Mla gene (Zhou et al., 2001), has
provided the opportunity to introduce several different Mia alleles
into a given cultivar. Thus, transgenic crop populations that are
heterogeneous for pathogen recognition but homogeneous for
other key traits can be created (Jones, 2001). This strategy may
prove more durable than pyramiding in R genes to a single crop
cultivar, which may more easily result in the selection of virulent

pathogen races.

Reactive oxygen intermediates

Following R gene-mediated pathogen recognition a battery of
both transcription-dependent and independent defence responses
are engaged. One of the most prominent of these is the transient
generation of reactive oxygen intermediates, predominantly
superoxide (O2-") and hydrogen peroxide (H202) at the site of
attempted pathogen invasion. This response has been termed the
oxidative burst (Doke, 1983). ROIs have been proposed to
undertake multiple functions in the establishment of plant disease
resistance including: direct microbial toxicity, the oxidative cross-
linking of cell wall structural proteins and cues for the engagement
of host cell death (Grant and Loake, 2000). Moreover, ROIs have
also recently been shown to function as signals which drive the
expression of a subset of defence-related genes independently of
the key defence regulators salicylic acid (SA), jasmonic acid (JA)
and ethylene (ET) (Grant et al., 2000). Recently, it has emerged
that ROIs may co-operate with nitric oxide (NO) to effect some of
these functions (Delledonne et al., 2001).

As ROISs function as key integrators of multiple defence-related
responses, manipulating ROI production may provide novel
strategies for disease control. A gene encoding glucose oxidase
from Aspergillus niger has been overexpressed in transgenic
potato plants (Wu et al., 1995). Glucose oxidase activity converts
glucose to gluconic acid with the concomitant generation of H20;
(Figure 1). Analysis of these transgenic plants demonstrated
significant accumulation of H2O: in the examined tissues.
Somewhat surprisingly, no phenotypic differences were reported
in these transgenics compared to wildtype plants. Nevertheless,
they exhibited striking resistance against Phytophthora infestans in
foliar tissue and Erwina caratovora in developed tubers. A
contrasting strategy was employed by Van Camp and colleagues
who increased H20: levels by suppressing its cellular depletion
(Chamnongpol et al., 1998). Tobacco plants were generated
expressing antisense RNA of a catalase isoform. Under conditions
of relatively strong illumination, that produced no visible damage,

the resulting increased levels of H>O» stimulated the expression of
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Figure 1. Modulation of cellular H2O2 levels via transgenesis.
Generation of H202 above a critical threshold level cues the
biosynthesis of salicylic acid (SA) which subsequently engages the
expression of genes encoding PR proteins. The accumulation of
these gene products leads to the establishment of broad spectrum
disease resistance (SAR). In an alternative strategy, the H.0»
threshold concentration is exceeded by the depletion of a major
catalase isoform. This is achieved via the expression of antisense
catalase RNA. Catalase removes excess H202 by converting this
ROI to water and oxygen.

both acidic and basic PR proteins. Moreover, these plants
subsequently established striking resistance against the bacterial
pathogen Pseudomonas syringae pv. syringae (Figure 1). Thus,
the specific and transient manipulation of ROI accumulation may
provide significant opportunities for engineering pathogen

resistance in crop plants.

Hypersensitive cell death

A near ubiquitous feature of R gene-mediated resistance against
biotrophic pathogens is the altruistic programmed execution of
directly challenged plant cells. This action may be desighed to
both withdraw essential nutrients required to support further
pathogen invasion and expose the aggressor to a suite of anti-
microbial proteins and small molecules released following the
dissolution of vacuolar membranes. Plant cells undergoing
hypersensitive cell death exhibit some of the characteristic features
of apoptosis in animal cells, for example, DNA laddering and the
formation of apoptotic bodies (Levine et al., 1996). While plants
do not possess caspases, the prototypic cell death mediators in
animals, serine proteases are possible candidates to undertake this
function in plants. This process is under genetic control because a
number of mutations have been uncovered that result in
hypersensitive-like cell death in the absence of pathogen challenge
(Greenberg, 1997). A further class of related mutants are unable to
contain lesion development once this process has been initiated
(Jabs et al., 1996; Loake, 2001).
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Figure 2. Attempted infection by a biotrophic fungus cues the
expression of the chimeric transgene encoding cryptogein. This gene
product functions as a powerful elicitor of plant cell death. Thus,
challenged plant cells are executed even in response to an ordinarily
virulent biotrophic pathogen (A). In a complementary approach,
constitutive overexpression of a gene encoding an animal antiapop-
totic protein, Bcl-2, suppresses the activation of plant cell death in
response to a toxin from a necrotrophic pathogen that possesses
potent cell death promoting activity.

Biotrophic pathogens complete their lifecycle without triggering
hypersensitive plant cell death. Furthermore, some biotrophs
release signals that actively suppress plant cell death. This
requirement for living plant cells has been exploited in the design
of novel resistance strategies. In this context, Ricci and co-workers
generated a chimeric gene containing the coding sequence of the
Phytophthora cryptogea elicitor, cryptogein, a powerful inducer of
, 1989), under the control of the
hsr203J gene promoter, which is rapidly activated in response to

plant cell death (Ricci et al.

virulent, in addition to avirulent pathogens (Keller et al., 1999).
Transgenic tobacco plants containing this construct rapidly
accumulated cryptogein in response to the virulent biotrophic
pathogen Phytophthora parasitica var nicotianae. This resulted in
the hypersensitive cell death of pathogen challenged cells
effectively suppressing pathogenesis (Figure 2A). Moreover,
resistance was broad spectrum because these transgenic plants also
restricted the growth of other unrelated virulent fungi including
Erysiphe cichoracearum.

In contrast, necrotrophic pathogens require dead cells to

complete their life cycles and have consequently evolved
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mechanisms to drive host cell execution. For example, fumonisin
B, synthesised by Fusarium moniliforme is a powerful effector of
plant cell death (Gilchrist et al., 1996). Interestingly, executed
plant cells exhibit some of the characteristic features of apoptosis.
Thus, this pathogen may recruit the hosts own cell death
machinery to aid infection. The requirement for host cell death,
however, may represent an Achilles heel for necrotrophic
pathogens. In this context, transgenic tobacco plants expressing
human Bcl-2 and Bcl-xl and nematode CED-9, suppressors of cell
death in animal cells, exhibited strikingly attenuated cell death in
response to the necrotrophic pathogens Sclerotinia sclerotiorum
and Botrytis cineria (Dickman et al., 2001) (Figure 2B). In a
similar fashion, the Arabidopsis mutant dndl, which exhibits
reduced hypersensitive cell death (Yu et al., 2000), was also found
to be significantly less susceptible to infection by B. cineria
(Govrin and Levine, 2000). Thus, further insights into the mole-
cular machinery underlying the orchestration of host cell death
may prime the sculpturing of novel resistance strategies against
both biotrophic and necrotrophic pathogens.

Jasmonic acid dependent defences

The unsaturated fatty acid, JA and its methyl derivative, Me-JA,
are thought to play important roles in the defence responses of
plants against both phytophageous insects and necrotrophic
pathogens. The first step in the biosynthesis of JA is the release of
linolenic acid from plant membranes by the action of a
chloroplastic phospholipase Al encoded by the DAD/! gene
(Ishiguro et al., 2001). Linolenic acid is then oxygenated by
lipoxygenase (LOX) and subsequently converted to 12-oxo-
phytodienoic acid (12-ox0-PDA) via the action of allene oxide
synthase and allene oxide cyclase respectively. JA is then
synthesised from 12-0x0-PDA by reduction and three steps of -
oxidation (Loake, 2002). Finally, JA can then be modified further
to form Me-JA and numerous conjugates. Significant parallels
therefore exist with both the structure and biosynthesis of
prostaglandins: lipid based defence signals in animals (Hortelano
et al., 2000).

JA accumulates in both local and systemic tissue following
infection by the necrotrophic pathogen Alternaria brassicicola
(Penninckx et al., 1996). In Arabidopsis, accumulation of JA is
required for the expression of the antimicrobial peptide PDF1.2,
and Thi2.1, which encodes an antifungal thionin (Penninckx et al.,
1996; Epple et al.,
wildtype Arabidopsis plants induces resistance to both A.

1995). Moreover, Me-JA application to

brassicicola and Botrytis cinerea (Thomma et al., 1998; Thomma
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et al., 2000). Interestingly, PDF1.2 expression is dependent on the
concomitant activation of the both the JA and ET response
pathways (Penninckx et al., 1998), whereas Thi2.] expression is
exclusively dependent upon Me-JA accumulation (Epple et al.,
1995). Both JA and ET signal transduction are also required for
Rhizobacterium-mediated activation of induced systemic
resistance in Arabidopsis (Knoester et al., 1999; Pieterse et al.,
1998). Moreover, these signals also cue the expression of genes
encoding basic PR proteins (SantaMaria et al., 2001).

Importantly, studies using JA and ET-insensitive Arabidopsis
mutants have further outlined the role that these two signalling
molecules play in disease resistance. The JA-insensitive coil
mutant did not express PDF1.2 following A. brassicicola infection
and exhibited enhanced susceptibility to both B. cinerea and A.
brassicicola (Thomma et al., 1998). Moreover, coil plants are also
more susceptible to infection by Erwinia carotovora subsp.
carotovora, the causal agent of potato soft rot (Norman-Setterblad
et al., 2000). In a similar fashion, a second JA-insensitive mutant,
designated jarl, was found to exhibit increased susceptibility to
root rot caused by Pythium irregulare (Staswick et al., 1998).
Importantly, coil plants were not more susceptible to the
biotrophic pathogen Peronospora parasitica (Thomma et al.,
1998). Thus, JA-dependent defence responses are required for
restricting the growth of necrotrophic pathogens but appear
dispensable for resistance against biotrophic pathogens such as P.
parasitica.

The manipulation of JA-dependent defence responses via
transgenesis may therefore offer significant opportunities for
conveying resistance against necrotrophic pathogens. Recently, a
gene termed JMT, encoding the methyl-transferase activity
responsible for the formation of Me-JA from JA has been isolated
from Arabidopsis (Seo et al., 2001). Informatively, the overex-
pression of this gene in transgenic Arabidopsis plants produced a
three-fold increase in cytoplasmic Me-JA concentration, without
increasing the concentration of JA. This resulted in the expression
of Me-JA regulated genes, for example, PDF1.2 and LOXII but
not genes cued by SA. When challenged with B. cinerea these
transgenics exhibited decreased susceptibility to this pathogen at
early time points post inoculation (Seo et al., 2001). Furthermore,
the phenotype of these transgenics was indistinguishable from
wildtype plants. Hence, increasing the endogenous concentration
of Me-JA in crop plants may provide resistance against
necrotrophic pathogens such as B. cinerea without significant
reductions in yield.

Conclusions

Over the last few years we have made significant progress in our
appreciation of the complexities of the plant defence response.
However, to date there is no commercial plant product exhibiting
disease resistance. It is anticipated the continuing sequencing of
both plant and pathogen genomes will provide the raw material for
a rapid acceleration in our understanding of plant:microbe
interactions. However, due to the multifarious strategies of
infection employed by plant pathogens, it remains unlikely that a
single commercial product will prove a panacea for global disease
control. Future strategies are more likely to embrace an integrated
disease management approach, exploiting, in combination,
complementary chemical and transgenic products to achieve

effective crop protection.
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