• Title/Summary/Keyword: Plant communities

Search Result 691, Processing Time 0.021 seconds

Plant Community Structure of Abies holophylla Community from Sinseongam to Jungdaesa in Odaesan National Park (오대산국립공원 신성암~중대사 전나무림 식물군집구조 특성)

  • Kim, Dong-Wook;Han, Bong-Ho;Kim, Jong-Yup;Yeum, Jung-Hun
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.6
    • /
    • pp.895-906
    • /
    • 2015
  • This study was carried out to the structure of plant community from Sinseongam to Jungdaesa in Odaesan National Park, furthermore, it seeks to curate the basic data for planning of the Abies holophylla's forest management in Odaesan National Park. In order to identify the current ecological environment, this study explored the actual vegetation as primary research and set to twenty plots(i.e. $400m^2$) for analysing detailed structure of plant communities. The research methodology was qualitative analysis, therefore it used TWINSPAN and DCA analysis tools. Especially, TWINSPAN performed well in several comparisons of classification techniques, DCA is one of the ordination technique showed that the plant communities. The plant community was analysed classification and ordination by TWINSPAN and DCA, moreover it was analysed the structure of plant community such as importance percentage of woody species, DBH class distribution, the index of diversity and rate of sample tree growth. The main vegetation was A. holophylla-Quercus mongolica forest and Deciduous broad-leaved forest in the communities where located in low altitude and valley, whereas main vegetation where located in high altitude and slope was Q. mongolica forest. The research site's plant communities were classified four groups. In all of communities, A. holophylla was dominant species in main canopy layer, furthermore, the three communities (community I, II, III) are growing up next generation of A. holophylla excluding community IV. The communities (community I, II, III) can be sustained current status which dominates the A. holophylla communities, simultaneously, there might be expanded the Deciduous broad-leaved communities by Carpinus cordata, Betula schmidtii and so on. While, it showed that the community IV tended to be weaken the forces of A. holophylla, therefore the community IV can be transferred to C. cordata-Deciduous broad-leaved communities in the future. The age of sample trees was 79~128(i.e. A. holophylla), 75~87(i.e. Pinus koraiensis) and 190 years(i.e. Ulmus davidiana var. japonica). The index of Shannon's Species diversity (H') were ranged from 0.3889 to 1.3332 in the communities.

Distribution, abundance, and effect on plant species diversity of Sasa borealis in Korean forests

  • Cho, Soyeon;Lee, Kyungeun;Choung, Yeonsook
    • Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.70-76
    • /
    • 2018
  • Background: Sasa borealis (Hack.) Makino, a clonal dwarf bamboo, is widespread in Korean forests. Although S. borealis is native to that country, its growth habit can cause considerable harm when occupying particular areas where it dominates and influences those forested communities. However, few reports have described the extent of its inhibitory effects on the vigor of co-existing plant species. Therefore, we investigated the distribution, abundance, and diversity of other plant species in the communities where this plant occurs in the east-central forests on the Korean Peninsula. Results: S. borealis was most commonly found at an elevational range of 800 to 1,200 m, on gentle, usually lower, and near valley northern slopes. Out of the 13 forest communities based on 447 forest stands that we surveyed, S. borealis was detected in eight communities, mostly where Quercus mongolica dominates. In particular, it was more common in late-successional mixed stands of Q. mongolica, other deciduous species, and the coniferous Abies holophylla. Because of their ability to expand rapidly in the forest, this plant covered more than 50% of the surface in most of our research plots. Species diversity declined significantly (F = 78.7, p = 0.000) as the abundance of S. borealis increased in the herb stratum. The same trend was noted for the total number of species (F = 18.1, p = 0.000) and species evenness (F = 91.5, p = 0.000). Conclusions: These findings clearly demonstrate that S. borealis is a weed pest and severely hinders species diversity. Authorities should be implementing various measures for ecological control to take advantage of declining chance after the recent synchronized massive flowering of S. borealis.

Management Methods and Vegetation Characteristics of Rhododendron mucronulatum Habitat in Mt. Biseul (비슬산 진달래나무군락지의 식생특성과 관리방안)

  • Park, In-Hwan;Cho, Kwang-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.3
    • /
    • pp.55-66
    • /
    • 2012
  • This study was carried out to investigate vegetation of Rhododendron mucronulatum habitat in Mt. Biseul to recommend basic information for synecological characteristics and management methods. The survey was carried out from May to July, 2011 and totally 46 vegetation data including 42 families 93 genera 108 species 16 varieties and 5 forma were collected and analyzed. Among the investigated 129 taxa, the numbers of rare plant resources were summarized as 19 taxa; The rare plants designated by Korea Forest Service, the specific plants by floristic region and the endemic plants were listed as 3 taxa, 15 taxa and 4 taxa, respectively. Rhododendron mucronulatum habitat of Mt. Biseul was classified into 3 plant communities (Carex lanceolata-Rhododendron mucronulatum community, Potentilla dickinsii-Selaginella rossii community, Carex lanceolata-Quercus mongolica community). Carex lanceolata-Rhododendron mucronulatum community was subdivided into Tripterygium regelii subunit and Miscanthus sinensis for. purpurascens subunit by human interference degree. And synecology, syndynamics, synchorology of these plant communities were identified, and Site-species ordination analysis by Principal Coordinate Analysis (PCoA) reflected that human impact, soil moisture condition were main ecological factors determining the distribution pattern of classified plant communities. Therefore these plant communities correspond to quite distinctive 4 habitat types : unstable-dry type=Miscanthus sinensis for. purpurascens subunit, unstable-moderate type=Tripterygium regelii subunit, stable-dry type=Potentilla dickinsii-Selaginella rossii community, stable-moderate type=Carex lanceolata-Quercus mongolica community. Finally, through the vegetational diagnosis, proper management methods such as a limit on the access of visitors, planting of native woody plants after removing unwanted vines or grass were suggested.

Livestock grazing and trampling effects on plant functional composition at three wells in the desert steppe of Mongolia

  • Narantsetseg, Amartuvshin;Kang, Sinkyu;Ko, Dongwook
    • Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.103-110
    • /
    • 2018
  • Backgrounds: In arid grasslands, wells are subject to heavy trampling and grazing pressure, which can increase vulnerability to local land degradation. To investigate trampling and grazing, we surveyed plant communities at three well sites in the desert steppe of Mongolia, using 1600-m line transects from the wells. The sites (Bshrub, Sshrub, and shrubL) differed by concomitant shrub type (big shrub, small shrub, and shrub-limited) and livestock pressure (light, medium, and heavy). A plant classification scheme based on edibility and morphology (rosette or creeping type) was used to separate grazing and trampling effects on plant communities. Results: Edible plants were dominant at all sites but a fraction of grazing- and trampling-tolerant plants increased in the order Bshrub, Sshrub, and shrubL, following livestock pressure. Clear transition zones from inedible to edible plant groups were recognized but at different locations and ranges among the sites. Trampling-tolerant plants explained 90% of inedible plants at Sshrub with camels and horses, but grazing-tolerant plants prevailed (60%) at shrubL with the largest livestock number. Plant coverage increased significantly along the transects at Bshrub and Sshrub but showed no meaningful change at shrubL. Herbaceous plant biomass showed significant positive and negative trends at Bshrub and shrubL, respectively. Conclusions: Both grazing and trampling can produce larger fractions of inedible plants; in this, camel and horses can have considerable effects on desert-steppe plant communities through trampling.

Noise-reduction Function and its Affecting Factors of Plant Communities

  • Song, Xiu-hua;Wu, Qian-qian;Yu, Dong-ming;PIAO, Yong-ji;Cho, Tae-Dong
    • Journal of Environmental Science International
    • /
    • v.25 no.10
    • /
    • pp.1407-1415
    • /
    • 2016
  • In this study, we investigated the relationship between noise reduction and the community structure of nine groups of typical plant communities as well as the reduction in noise at different frequencies. The semantic differential method was adopted to explore the perception of noise reduction. The results indicated that there was a significantly positive correlation between noise reduction and coverage, a significantly negative correlation between noise reduction and bifurcate height, and a negative correlation between noise reduction and bare rate. However, there was no significant correlation between noise reduction and height, diameter at breast height, or crown width. The reduction of middle-frequency noise was better than that of low- and high-frequency noise. The indicators "quiet" and "calm" showed that plant communities could reduce the noise perceived by humans. However, overly dense woodland caused nervousness, fear, depression, and other negative effects. Relatively open environments and those with large forest gaps obtained the highest evaluation.

A Study on Establishment of Mitigation Technique of Deterioration for Environmental-friendly Dam Construction in Rural Area - A focus of the Plant Ecosystem - (농촌지역내 친환경적인 댐 조성을 위한 훼손저감기법 적용 연구 - 식물생태계를 중심으로 -)

  • Lee, Soo-Dong;Kang, Hyun-Kyung
    • Journal of Korean Society of Rural Planning
    • /
    • v.16 no.2
    • /
    • pp.31-45
    • /
    • 2010
  • Building a dam that is not considering the environmental impact and human social impact can cause the loss of entire ecospheres such as fragmentary green network, disturbance of plants ecosystem, the destruction of social and cultural indigenous resources, therefore, it can occur the environment change and distortion of ecosystem. The purpose of this study is that presenting the methods of ecosystem maintenance and ecosystem damage compensation about for environmentally direct impact i.e. the ecosystem change in the intended place for building a dam. According to the planning progress, the study was proceeded to planning site examine, assessment, conception plan. As the results of examine and assessment, it must be necessary to offered the maintenance and damage compensation if the site where include the 1st degree of biotope area, the 2nd degree of biotope and the 8th degree of green naturality area were damaged by being submerged and constructing road. In addition, according to the conception plan, we suggest the mitigation proposals such as plant communities transplant, planning of connecting green network against for influencing direct impact ecosystem that is destroying plant communities, damaging inhabitants, noise pollution, water pollution, etc.

Comparison of Bacterial Community of Healthy and Erwinia amylovora Infected Apples

  • Kim, Su-Hyeon;Cho, Gyoengjun;Lee, Su In;Kim, Da-Ran;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.37 no.4
    • /
    • pp.396-403
    • /
    • 2021
  • Fire blight disease, caused by Erwinia amylovora, could damage rosaceous plants such as apples, pears, and raspberries. In this study, we designed to understand how E. amylovora affected other bacterial communities on apple rhizosphere; twig and fruit endosphere; and leaf, and fruit episphere. Limited studies on the understanding of the microbial community of apples and changes the community structure by occurrence of the fire blight disease were conducted. As result of these experiments, the infected trees had low species richness and operational taxonomic unit diversity when compared to healthy trees. Rhizospheric bacterial communities were stable regardless of infection. But the communities in endosphere and episphere were significanlty affected by E. amylovora infection. We also found that several metabolic pathways differ significantly between infected and healthy trees. In particular, we observed differences in sugar metabolites. The finding provides that sucrose metabolites are important for colonization of E. amylovora in host tissue. Our results provide fundamental information on the microbial community structures between E. amylovora infected and uninfected trees, which will contribute to developing novel control strategies for the fire blight disease.

Classification and Characteristics of the Roadbed Plant Communities in Daegu, Korea (대구지역 노상식물군락의 분류와 분포 특성)

  • Ahn, Kyung-Whan;Kim, Jong-Won
    • The Korean Journal of Ecology
    • /
    • v.28 no.1
    • /
    • pp.31-36
    • /
    • 2005
  • An important theme of this paper is to search for more genelalities of diversity and distribution pattern on the trampled plant communities in Daegu area. A total of 50 phytosociological releves were analyzed by the Zurich-Montpellier School's method and generalized habitat characteristics by using Euclidean coefficient and PCoA (Principal Coordinates Analysis). Five plant communities were classified and matched into largely two physiognomic types: grass-types such as Eragrostis ferruginea community, Eleusine indica community, Setaria viridis community, Digitaria ciliaris community, and forb-type of Plantage asiatica community only. These plant communities correspond to quite distinctive four habitat types, with both soil stability and moisture in microhabitat conditions: stable-moderate, unstable-moderate, stable-dry, and unstable-dry. Top-ten species showing the highest relative net contribution degree(r-NCD) were Digitaria ciliaris, Eleusine indica, Eragrostis ferruginea, Plantago asiatica, Echinochloa crus-galli, Trifolium repens, Polygonum aviculare, Setaria viridis, Setaria glauca and Artemisia princeps. The front three species showing more than 50% in percent r-NCD possess florescence after monsoon season. It is critically pointed out that the regional ecological differentiations i.e. the Daegu bioclimatic division, the $C_4$-plant dominant season(post-monsoon) of Korean peninsula, and species composition different from Japan's Plantaginetalia asiaticae, are the basis for deriving characteristics of the roadbed trampled plant communities of Daegu.

Analysis of Endophytic Bacterial Communities and Investigation of Core Taxa in Apple Trees

  • Yejin Lee;Gyeongjun Cho;Da-Ran Kim;Youn-Sig Kwak
    • The Plant Pathology Journal
    • /
    • v.39 no.4
    • /
    • pp.397-408
    • /
    • 2023
  • Fire blight disease, caused by Erwinia amylovora, is a devastating affliction in apple cultivation worldwide. Chemical pesticides have exhibited limited effectiveness in controlling the disease, and biological control options for treating fruit trees are limited. Therefore, a relatively large-scale survey is necessary to develop microbial agents for apple trees. Here we collected healthy apple trees from across the country to identify common and core bacterial taxa. We analyzed the endophytic bacterial communities in leaves and twigs and discovered that the twig bacterial communities were more conserved than those in the leaves, regardless of the origin of the sample. This finding indicates that specific endophytic taxa are consistently present in healthy apple trees and may be involved in vital functions such as disease prevention and growth. Furthermore, we compared the community metabolite pathway expression rates of these endophyte communities with those of E. amylovora infected apple trees and discovered that the endophyte communities in healthy apple trees not only had similar community structures but also similar metabolite pathway expression rates. Additionally, Pseudomonas and Methylobacterium-Methylorobrum were the dominant taxa in all healthy apple trees. Our findings provide valuable insights into the potential roles of endophytes in healthy apple trees and inform the development of strategies for enhancing apple growth and resilience. Moreover, the similarity in cluster structure and pathway analysis between healthy orchards was mutually reinforcing, demonstrating the power of microbiome analysis as a tool for identifying factors that contribute to plant health.

Effect of Bacillus mesonae H20-5 Treatment on Rhizospheric Bacterial Community of Tomato Plants under Salinity Stress

  • Lee, Shin Ae;Kim, Hyeon Su;Sang, Mee Kyung;Song, Jaekyeong;Weon, Hang-Yeon
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.662-672
    • /
    • 2021
  • Plant growth-promoting bacteria improve plant growth under abiotic stress conditions. However, their effects on microbial succession in the rhizosphere are poorly understood. In this study, the inoculants of Bacillus mesonae strain H20-5 were administered to tomato plants grown in soils with different salinity levels (EC of 2, 4, and 6 dS/m). The bacterial communities in the bulk and rhizosphere soils were examined 14 days after H20-5 treatment using Illumina MiSeq sequencing of the bacterial 16S rRNA gene. Although the abundance of H20-5 rapidly decreased in the bulk and rhizosphere soils, a shift in the bacterial community was observed following H20-5 treatment. The variation in bacterial communities due to H20-5 treatment was higher in the rhizosphere than in the bulk soils. Additionally, the bacterial species richness and diversity were greater in the H20-5 treated rhizosphere than in the control. The composition and structure of the bacterial communities varied with soil salinity levels, and those in the H20-5 treated rhizosphere soil were clustered. The members of Actinobacteria genera, including Kineosporia, Virgisporangium, Actinoplanes, Gaiella, Blastococcus, and Solirubrobacter, were enriched in the H20-5 treated rhizosphere soils. The microbial co-occurrence network of the bacterial community in the H20-5 treated rhizosphere soils had more modules and keystone taxa compared to the control. These findings revealed that the strain H20-5 induced systemic tolerance in tomato plants and influenced the diversity, composition, structure, and network of bacterial communities. The bacterial community in the H20-5 treated rhizosphere soils also appeared to be relatively stable to soil salinity changes.