• Title/Summary/Keyword: Plant Safety

Search Result 2,573, Processing Time 0.035 seconds

A Study on the Development of Installation and Management of Safety Shower (Safety shower 설치 및 관리기준 개선에 관한 연구)

  • Lee, Dong Hyeok;Yoo, Byung Tae
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.1-7
    • /
    • 2018
  • Currently chemical plant risk have been issued by occurring frequent accidents. Accidents can be generally composed of fire, explosion, release in chemical plant. In case of fire and explosion, accident victims are occurred immediately after accident but release accident, late emergency response cause damage to worker. Especially, there are many victims by late emergency response against chemical exposure to skin. In case of chemical exposure to skin, irreversible damage like death, blindness, burn can be prevented by washing immediately. Safety shower can provide the cleaning for chemical exposure to eye, skin. Most of chemical plants are built in 1980s so equipment become superannuated. In this reason, safety shower also cannot operate normally in emergency situation. Therefor safety shower should be managed by installation and management guideline. This study perform the establishment guideline for safety shower installation and inspection to increase the reliability.

Monitoring of Cd, Hg, Pb, and As and Risk Assessment for Commercial Medicinal Plants (국내 유통 약용작물 중 카드뮴, 수은, 납, 비소 함량 모니터링 및 위해성 평가)

  • Kim, Hyuck-Soo;Kim, Kwon-Rae;Hong, Chang-Oh;Go, Woo-Ri;Jeong, Seon-Hee;Yoo, Ji-Hyock;Cho, Nam-Jun;Hong, Jin-Hwan;Kim, Won-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.282-287
    • /
    • 2015
  • BACKGROUND: The current study was carried out to investigate Cd, Hg, Pb and As contaminations in 222 commercial medicinal plants and to estimate the potential health risk through dietary intake of commercial medicinal plants in Korea.METHODS AND RESULTS: The Cd, Hg, Pb, and As in medicinal plants were analyzed by ICP/MS and mercury analyzer.The potential health risk was estimated using risk assessment tools. Total amount of Cd in medicinal plants with 29% samples exceeded the standard limit legislated in 'Pharmaceutical Affairs Act' while all plant samples were lower than the standard limit value for As, Hg, and Pb. However, when applying the standard limit for root vegetable (fresh weight) in the Food Sanitation Act, four samples exceeded the standard limit of Pb. For health risk assessment, the values of cancer risk probability were 0.3~5.9×10-7which were less than the acceptable cancer risk of 10-6~10-4for regulatory purpose. Also, Hazard quotientvalues were lower than 1.0.CONCLUSION: Therefore, these results demonstrated that human exposure to Cd, Hg, Pb, and As through dietary intake of commercial medicinal plants might notcause adverse health effects although some medicinal plants were higher than the standard limit values for Cd and Pb.

Development of a CCTV Based Smart Safety Management System in Thermal Power Plants (석탄발전산업을 위한 지능형 CCTV 기반 스마트안전관리시스템 개발 연구)

  • Song, Ho Jun;Gao, Jianxi;Shin, Wan Seon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.50-63
    • /
    • 2021
  • There has been a steady rate of accident in Coal Thermal Power Plants which have relatively higher chance of mortality. However, neither the systematic view of safety management nor the methodology such as safety factors or system requirements are yet to be studied in detail. Therefore, this study aims to propose a methodology to preemptively deal with safety issues and to secure fact focused responsibility in safety. It consists of two main parts. First, the Safety Measurement Index(SMI) with total 50 factors is proposed by analyzing the key factors that contribute to safety accidents based on failure mode and effect analysis (FMEA) and quality function deployment (QFD). To analyze the safety requirements, index presented by major countries and organizations are discussed. Second, main features of intelligent CCTV are studied to determine their relative importance for the framework of Smart Safety Management System (SSMS). Main features are discussed with four technological steps. Also, QFD was held to analyze to analyze how key technologies deal with Quality Measurement Index(QMI). The research results of this study reveal that scientific approaches could be utilized in integrating CCTV technologies into a smart safety management system in the era of Industry 4.0. Moreover, this reasearch provides an specific approach or methodology for dealing with safety management in Coal Thermal Power Plant.

Safety assessment of generation III nuclear power plant buildings subjected to commercial aircraft crash part III: Engine missile impacting SC plate

  • Xu, Z.Y.;Wu, H.;Liu, X.;Qu, Y.G.;Li, Z.C.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.417-428
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part III, the local damage of the rigid components of aircraft, e.g., engine and landing gear, impacting the steel concrete (SC) structures of NPP containment is mainly discussed. Two typical SC target panels with the thicknesses of 40 mm and 100 mm, as well as the steel cylindrical projectile with a mass of 2.15 kg and a diameter of 80 mm are fabricated. By using a large-caliber air gas gun, both the projectile penetration and perforation test are conducted, in which the striking velocities were ranged from 96 m/s to 157 m/s. The bulging velocity and the maximal deflection of rear steel plate, as well as penetration depth of projectile are derived, and the local deformation and failure modes of SC panels are assessed experimentally. Then, the commercial finite element program LS-DYNA is utilized to perform the numerical simulations, by comparisons with the experimental and simulated projectile impact process and SC panel damage, the numerical algorithm, constitutive models and the corresponding parameters are verified. The present work can provide helpful references for the evaluation of the local impact resistance of NPP buildings against the aircraft engine.

A Study of Numerical Reproducibility for the Backdraft Phenomena in a Compartment using the FDS (FDS를 이용한 구획실 백드래프트 현상의 수치적 재현성에 관한 연구)

  • Park, Ji-Woong;Oh, Chang Bo;Choi, Byung Il;Han, Yong Shik
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.6
    • /
    • pp.6-10
    • /
    • 2013
  • A numerical reproducibility of the backdraft phenomena in a compartment was investigated. The prediction performance of two combustion models, the mixture fraction and finite chemistry models, were tested for the backdraft phenomena using the FDS code developed by the NIST. The mixture fraction model could not predict the flame propagation in a fuel-air mixture as well as the backdraft phenomena. However, the finite chemistry model predicted the flame propagation in the mixture inside a tube reasonably. In addition, the finite chemistry model predicted well the backdraft phenomena in a compartment qualitatively. The flame propagation inside the compartment, fuel and oxygen distribution and explosive fire ball behavior were well simulated with the finite chemistry model. It showed that the FDS adopted with the finite chemistry model can be an effective simulation tool for the investigation of backdraft in a compartment.

Cybersecurity Threats and Responses of Safety Systems in NPPs (원전 안전계통의 사이버보안 위협 및 대응)

  • Jung, Sungmin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.99-109
    • /
    • 2020
  • In the past, conservative concepts have been applied in terms of the characteristic of nuclear power plants(NPPs), resulting in analog-based equipment and closed networks. However, as digital technology has recently been applied to the design, digital-based facilities and communication networks have been used in nuclear power plants, increasing the risk of cybersecurity than using analog-based facilities. Nuclear power plant facilities are divided into a safety system and a non-safety system. It is essential to identify the difference and cope with cybersecurity threats to the safety system according to its characteristics. In this paper, we examine the cybersecurity regulatory guidelines for safety systems in nuclear power plant facilities. Also, we analyze cybersecurity threats to a programmable logic controller of the safety system and suggest cybersecurity requirements be applied to it to respond to the threats. By implementing security functions suitable for the programmable logic controller according to the suggested cybersecurity requirements, regulatory guidelines can be satisfied, and security functions can be extended according to other system requirements. Also, it can effectively cope with cybersecurity attacks that may occur during the operation of nuclear power plants.

Probabilistic safety assessment-based importance analysis of cyber-attacks on nuclear power plants

  • Park, Jong Woo;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.138-145
    • /
    • 2019
  • With the application of digital technology to safety-critical infrastructures, cyber-attacks have emerged as one of the new dangerous threats. In safety-critical infrastructures such as a nuclear power plant (NPP), a cyber-attack could have serious consequences by initiating dangerous events or rendering important safety systems unavailable. Since a cyber-attack is conducted intentionally, numerous possible cases should be considered for developing a cyber security system, such as the attack paths, methods, and potential target systems. Therefore, prior to developing a risk-informed cyber security strategy, the importance of cyber-attacks and significant critical digital assets (CDAs) should be analyzed. In this work, an importance analysis method for cyber-attacks on an NPP was proposed using the probabilistic safety assessment (PSA) method. To develop an importance analysis framework for cyber-attacks, possible cyber-attacks were identified with failure modes, and a PSA model for cyber-attacks was developed. For case studies, the quantitative evaluations of cyber-attack scenarios were performed using the proposed method. By using quantitative importance of cyber-attacks and identifying significant CDAs that must be defended against cyber-attacks, it is possible to develop an efficient and reliable defense strategy against cyber-attacks on NPPs.

Effects of Temperature and Humidity on Fungal Occurrence in Dried Red Pepper during Storage

  • Kim, Sosoo;Baek, Seul Gi;Hung, Nguyen Bao;Kim, Se-Ri;Jang, Ja Yeong;Kim, Jeomsoon;Lee, Theresa
    • Research in Plant Disease
    • /
    • v.27 no.4
    • /
    • pp.155-163
    • /
    • 2021
  • Dried red peppers are frequently contaminated with mycotoxins during storage. To determine the effect of storage environments on fungal occurrence and subsequent mycotoxin accumulation in dried red peppers, we monitored red pepper powder and whole fruit samples for fungal occurrence under various temperatures and relative humidity (RH) conditions during 340 days. Fungal occurrences fluctuated in both pepper forms throughout the storage but they were higher in pepper powder than whole one, higher under low temperatures (-20℃, 0℃, or 4℃) than others (10℃, 25℃, or 30℃), and higher under RH 93% than RH 51% and 69% in both peppers. The samples exhibiting high fungal occurrences were associated mainly with dominant species such as Aspergillussydowii, Penicillium solitum, P. roqueforti, P. polonicum, or P. chrysogenum. Mycotoxigenic species, including A. flavus, A. ochraceus, A. westerdijkiae, A. tubingensis, and P. citrinum, were also detected throughout the samples. Although mycotoxins were not detected in the samples, mycotoxigenic potential of A. flavus, A. ochraceus, and A. westerdijkiae isolates were confirmed. These results show that low temperatures (-20℃, 0℃, or 4℃) and/or high surrounding RH (>93%) are not safe environments for storage of dried red peppers as fungal growth can occur under these conditions.

Safety management of living modified plants: A review (유전자변형 식물체 연구에서의 안전관리 고찰)

  • Lee, Bumkyu
    • Journal of Plant Biotechnology
    • /
    • v.49 no.3
    • /
    • pp.163-170
    • /
    • 2022
  • There is a continuous rise in the commercialization of living modified (LM) organisms worldwide. While LM plants have not yet been cultivated in South Korea, research, development, import of products, and registration of related research facilities are progressing. LM plants should be tested in greenhouses and fields during development. Furthermore, environmental risk assessment and safety management should be performed before their release into the environment. Research on LM plant development is conducted in laboratories as well as confined greenhouses and fields. Safety management regulations are provided as combination standards for the LMO Act in each research district. The accidental release of the LM petunia in Japan was a significant incident related to LM plant research. It implies that normal plants within the distance of crossing should be regarded as LM plants. In the United States, LM creeping bentgrass was released into the environment, thus necessitating the establishment of stringent measures to prevent the scattering of LM plant seeds by wind or other mediums. In South Korea, LM Zoysia and LM cotton were released through rainwater. Therefore, safety measures that prevent LM seed mixing and plant vegetative propagules escaping into the environment via rainwater must be established. Preventing the dispersal of unapproved LM plants requires significant time, expenditure, and effort. Researchers should first identify the impact of LM plants on the ecosystem, and steps to avert their environmental release must be implemented.