• Title/Summary/Keyword: Plant Leaf Disease

Search Result 779, Processing Time 0.024 seconds

Control Efficacy of a New Fungicide Fludioxonil on Lettuce Gray Mold According to Several Conditions (발병 조건에 따른 fludioxonil의 상추 잿빛곰팡이병 방제효과)

  • Choi, Gyung-Ja;Jang, Kyoung-Soo;Choi, Yong-Ho;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.15 no.3
    • /
    • pp.217-221
    • /
    • 2009
  • Fludioxonil is derived from the antifungal compound pyrrolnitrin produced by Pseudomonas pyrrocinia and classified as a reduced-risk fungicide by the US EPA. The efficacy of fludioxonil for the control of lettuce gray mold caused by Botrytis cinerea was evaluated under several conditions such as growth stages of host, inoculum concentrations, and amounts of potato dextrose broth (PDB) included in spore suspension of B. cinerea. At 4-leaf stage of lettuce plants, fludioxonil applied at 2 ${\mu}g$/ml was more effective for the control of gray mold than at 5- and 6-leaf stages. However, fludioxonil at more than 10 ${\mu}g$/ml provided similar control activity in all growth stages of lettuce tested. The fungicide (10 and 50 ${\mu}g$/ml) also gave excellent control of gray mold on lettuce seedlings inoculated with spore suspensions of B. cinerea ($2.5{\times}10^5$ to $2{\times}10^6$ spores/ml). But, control efficacy of fludioxonil (2 ${\mu}g$/ml) was negatively correlated with inoculum concentration. Addition of PDB in spore suspension of B. cinerea resulted in higher disease severity than non-treated control. By inoculating spore suspension including 0.5% PDB, the fungicide gave the most control activity on the disease, followed by 1% and 2% PDB. The results suggest that fludioxonil has potential to control gray mold of lettuce, but the fungicide at a concentration having moderate activity may represent low control efficacy on the disease under some conditions.

Efficacy of Three Antiviral Agents and Resistant Cultivars on Tomato Yellow Leaf Curl Virus in Tomato (토마토황화잎말림바이러스병에 대한 저항성 품종과 항바이러스 활성 물질 3종의 효과 검증)

  • Kwon, Yongnam;Cha, Byeongjin;Kim, Mikyeong
    • Research in Plant Disease
    • /
    • v.28 no.2
    • /
    • pp.82-91
    • /
    • 2022
  • Recently, several in vitro studies have reported antiviral activity of agents of systemic acquired resistance against plant virus infection, but the approach has not been applied in a wide range of agricultural fields. The objective of this study was to evaluate the inhibitory effect of the exogenous application of salicylic acid (SA), chitosan (CH), or eugenol (EG) in tomato yellow leaf curl virus (TYLCV) infection of greenhouse-grown tomato plants. In vitro, the initial time of symptom was observed in TYLCV-infected plants (VP) of the resistant cultivar 'Superdotaerang' at 12 days post inoculation (dpi) after application of antiviral agents. At 32 dpi, the disease rate of TYLCV in the CHT+VP (0.1% chitosan and virus infected control) treated plants was 87.5%, lower than that of the other treatment. However, the virus content in the CHT+VP treated plants was higher than those of the other treatments, and SA, EG, and CH did not show significant effect on plant height or shoot and root fresh weight. Our results from summer-cultivated greenhouse-grown tomatoes show that none of the tested agents had an inhibitory activity on viral infection or yield of tomato 'Dotaerangsola'cultivar. In contrast, all treated 'TY Giants' cultivars that possessed TYLCV resistance genes Ty-1 and Ty-3a did not show typical symptoms and the virus content was remarkably lower than those in the TYLCV treated plants in 'Superdotaerang'. The results of this research indicated that the planting of resistant tomato cultivars was effective method instead of using SA, EG, and CH (known as resistance-inducing factors for control) of TYLCV in the field.

Proteomic analysis of rice mutants susceptible to Magnaporthe oryzae

  • Ryu, Hak-Seung;Song, Min-Young;Kim, Chi-Yeol;Han, Muho;Lee, Sang-Kyu;Ryoo, Nayeon;Cho, Jung-Il;Hahn, Tae-Ryong;Jeon, Jong-Seong
    • Plant Biotechnology Reports
    • /
    • v.3 no.2
    • /
    • pp.167-174
    • /
    • 2009
  • To identify genes involved in rice Pi5-mediated disease resistance to Magnaporthe oryzae, we compared the proteomes of the RIL260 rice strain carrying the Pi5 resistance gene with its susceptible mutants M5465 and M7023. Proteins were extracted from the leaf tissues of both RIL260 and the mutant lines at 0, 24, and 48 h after M. oryzae inoculation and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis identified eight proteins that were differently expressed between the resistant and susceptible plants (three down- and five up-regulated proteins in the mutants). The down-regulated proteins included a triosephosphate isomerase (spot no. 2210), a 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (no. 3611), and an unknown protein (no. 4505). In addition, the five up-regulated proteins in the mutants were predicted to be a fructokinase I (no. 313), a glutathione S-transferase (no. 2310), an atpB of chloroplast ATP synthase (no. 3616), an aminopeptidase N (no. 3724), and an unknown protein (no. 308). These results suggest that proteomic analysis of rice susceptible mutants is a useful method for identifying novel proteins involved in resistance to the M. oryzae pathogen.

Gene Expression Analysis in Cucumber Leaves Primed by Root Colonization of Pseudomonas chlororaphis O6 upon Challenge-inoculation with Corynespora cassiicola.

  • Kim, M.;Kim, Y. C.;B. H. Cho
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.90.1-90
    • /
    • 2003
  • Colonization of Pseudomonas chlororaphis O6, a nonpathogenic rhizobacterium, on the roots induced systemic resistance in cucumber plants against tai-get leaf spot, a foliar disease caused by Corynespora cassiicola. A cDNA library was constructed using mRNA extracted from the cucumber leaves 12 h after inoculation with C. cassiicola, which roots had been previously treated with O6. To identify the genes involved in the O6-mediated induced systemic resistance (ISR), we employed a subtractive hybridization method using mRNAs extracted from C cassiicola-inoculated cucumber leaves with and without previous O6 treatment on the plant roots. Differential screening of the cDNA library led to the isolation of 5 distinct genesencoding a GTP-binding protein, a putative senescence-associated protein, a galactinol synthase, a hypersensitive-induced reaction protein, and a putative aquaporin. Expressions of these genes are not induced by O6 colonization alone. Before challenge inoculation, no increase in the gene transcriptions could be detected in previously O6-treated and untreated plants but, upon subsequent inoculation with the pathogenic fungus, transcription levels in O6-treated plants rose significantly faster and stronger than in untreated plants. Therefore, the O6-mediated ISR may be associated with an enhanced capacity for the rapid and effective activation of cellular defense responses which becomes apparent only after challenge inoculation on the distal, untreated plant parts, as suggested by Conrath et al. (2002). This work was supported by a grant R11-2001-092-02006-0 from the Korea Science and Engineering Foundation through the Agricultural Plant Stress Research Center at Chonnam National University.

  • PDF

Hydrogen Peroxide- and Nitric Oxide-mediated Disease Control of Bacterial Wilt in Tomato Plants

  • Hong, Jeum Kyu;Kang, Su Ran;Kim, Yeon Hwa;Yoon, Dong June;Kim, Do Hoon;Kim, Hyeon Ji;Sung, Chang Hyun;Kang, Han Sol;Choi, Chang Won;Kim, Seong Hwan;Kim, Young Shik
    • The Plant Pathology Journal
    • /
    • v.29 no.4
    • /
    • pp.386-396
    • /
    • 2013
  • Reactive oxygen species (ROS) generation in tomato plants by Ralstonia solanacearum infection and the role of hydrogen peroxide ($H_2O_2$) and nitric oxide in tomato bacterial wilt control were demonstrated. During disease development of tomato bacterial wilt, accumulation of superoxide anion ($O_2{^-}$) and $H_2O_2$ was observed and lipid peroxidation also occurred in the tomato leaf tissues. High doses of $H_2O_2$ and sodium nitroprusside (SNP) nitric oxide donor showed phytotoxicity to detached tomato leaves 1 day after petiole feeding showing reduced fresh weight. Both $H_2O_2$ and SNP have in vitro antibacterial activities against R. solanacearum in a dose-dependent manner, as well as plant protection in detached tomato leaves against bacterial wilt by $10^6$ and $10^7$ cfu/ml of R. solanacearum. $H_2O_2$- and SNP-mediated protection was also evaluated in pots using soil-drench treatment with the bacterial inoculation, and relative 'area under the disease progressive curve (AUDPC)' was calculated to compare disease protection by $H_2O_2$ and/or SNP with untreated control. Neither $H_2O_2$ nor SNP protect the tomato seedlings from the bacterial wilt, but $H_2O_2$ + SNP mixture significantly decreased disease severity with reduced relative AUDPC. These results suggest that $H_2O_2$ and SNP could be used together to control bacterial wilt in tomato plants as bactericidal agents.

Effect of LED Light Quality and Intensity on Growth Characteristics of Ginseng Cultivated in Plastic House

  • Sang Young Seo;Jong hyeon Cho;Chang Su Kim;Hyo Jin Kim;Min Sil An;Du Hyeon Yoon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.61-61
    • /
    • 2020
  • This experiment was carried out using artificial bed soil and LED in the plastic film house(irradiation time: 07:00-17:00/day). Seedlings(n=63 per 3.3 m2) of ginseng was planted on May 17, 2018. LED was combined with red and blue light in a 3:1 ratio and irradiated with different light intensity(40-160 µmol/m2/s). Average air temperature from April to September according to the light intensity test was 20.4℃-20.9℃. Average artificial bed soil temperature was 20.1℃-21.7℃. The test area where fluorescent lamp was irradiated tended to be somewhat lower than the LED irradiation area. The chemical properties of the test soil was as follows. pH levels was 6.6-6.7, EC levels 0.9-1.3 dS/m and OM levels 30.6-32.0%. The available P2O5 contents was 73.3-302.3 mg/kg. Exchangeable cations K and Ca contents were higher than the allowable ranges and mg content was high in the fluorescent lamp treatment. The photometric characteristics of LED light intensity are as follows. The greater the light intensity, the higher the PPFD(Photosynthetic Photon Flux Density) value, illuminance and solar irradiation. Fluorescent lamp treatment had high illuminance value, but PPFD and solar irradiation were lower than LED intensity 40 µmol/m2/s treatment. The photosynthetic rate increased(2.0-3.8 µmolCO2/m2/s) as the amount of light intensity increased, peaking at 120 µmol/m2/s, and then decreasing. The SPAD (chlorophyll content) value decreased as the amount of light intensity increased, and was the highest at 36.1 in fluorescent lamp treatment. Ginseng germination started on April 5 and took 14-17 days to germinate. The overall germination rate was 68.8-73.6%. The growth of aerial parts(plant height etc.) were generally excellent in the treatment of light intensity of 120-160 µmol/m2/s. The plant height was 41.9 cm, stem length was 24.1 cm, leaf length was 9.8 cm and stem diameter was 5.6 mm. The growth of underground part (root length etc.) was the best in the treatment with 120 µmol/m2/s of light intensity. Due to the root length was long(24.8 cm) and diameter of taproot was thick(18.7 mm), the fresh root weight was the heaviest at 24.8 g. There were no disease incidence such as Alternaria blight, Gray mold and Anthracnose. Disease of Damping-off caused by Rhizoctonia solani occurred 0.6-1.5% and incidence ratio of rusty root ginseng was 30.8-62.3%. It is believed that the reason for the high incidence of rusty root ginseng is that the amount of field moisture capacity of artificial bed soil is larger than the soil. Leaf discoloration rate was 13.7-32.3%.

  • PDF

A Model to Forecast Rice Blast Disease Based on Weather Indexing (기상지수에 의한 벼도열병 예찰의 한 모델)

  • Kim Choong-Hoe;MacKenzie D. R.;Rush M. C.
    • Korean Journal Plant Pathology
    • /
    • v.3 no.3
    • /
    • pp.210-216
    • /
    • 1987
  • A computer program written to predict blast occurrence based on micro climatic events was developed and tested as an on-site microcomputer in field plots in 1984 and 1985. A microcomputer unit operating on alkaline batteries; continuously monitored air temperature, leaf wetness, and relative humidity; interpreted the microclimate information in relation to rice blast development and displayed daily values (0-8) of blast units of severity (BUS). Cumulative daily BUS values (CBUS) were highly correlated with blast development on the two susceptible cultivars, M-201 and Brazos grown in field plots. When CBUS values were used to predict the logit of disease proportions, the average coefficients of determination $(R^2)$ between these two factors were 71 to $91\%$, depending on cultivar and year. This was a significant improvement when compared to 61 to $79\%$ when days were used as a predictor of logit disease severity. The ability of CBUS to predict logit disease severity was slightly less with Brazos than M-201. This is significant inasmuch as Brazos showed field resistance at mid-sea­son. The results in this study indicate that the model has the potential for future use and that the model could be improved by incorporating other variables associated with host plants and pathogen races in addition to the key environmental variables.

  • PDF

Pink Pigmented Facultative Methylotrophic Bacteria(PPFMs): Introduction to Current Concepts (분홍색 색소를 형성하는 methylotrophic acteria(PPFMs): 최근 경향소개)

  • Munusamy, Madhaiyan;Sa, Tongmin;Kim, Jai-Joung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.266-287
    • /
    • 2004
  • The non infecting, plant associated bacteria have attracted increased attention for stimulating plant growth and as environmental friendly plant protecting agents. Pink-pigmented facultatively methylotrophic bacteria (PPFMs), classified as Methylobacterium spp., are persistent colonizers of plant leaf surfaces. As the leaves of most or all plants harbor PPFMs that utilize leaf methanol as their sole source of carbon and energy, which is a specific attribute of the genus Methylobacterium. Although they are not well known, these bacteria are co-evolved, interacting partners in plant metabolism. This claim is supported, for example, by the following observations: (1) PPFMs are seed-transmitted, (2) PPFMs are frequently found in putatively axenic cell cultures, (3) Low numbers of seed-borne PPFMs correlate with low germinability, (4) Plants with reduced numbers of PPFM show elevated shoot/root ratios, (5) Foliar application of PPFMs to soybean during pod fill enhances seed set and yield, (6) Liverwort tissue in culture requires PPFM-produced vitamin B12 for growth, (7) treated plants to suppress or decrease disease incidence of sheath blight caused by Rhizoctonia solani in rice, and (8) the PPFM inoculation induced number of stomata, chlorophyll concentration and malic acid content, they led to increased photosynthetic activity. Methylobacterium spp. are bacterial symbionts of plants, shown previously to participate in plant metabolism by consuming plant waste products and producing metabolites useful to the plant. There are reports that inform about the beneficial interactions between this group of bacteria and plants. Screening of such kind of bacteria having immense plant growth promoting activities like nitrogen fixation, phytohormone production, alleviating water stress to the plants can be successfully isolated and characterized and integration of such kind of organism in crop production will lead to increased productivity.

Overexpression of twin-arginine translocation (TAT) pathway conferred immunity to Xanthomonas oryzae v. oryzae in rice

  • Nino, Marjohn C.;Song, Jae-Young;Nogoy, Franz Marielle;Kang, Kwon-Kyoo;Cho, Yong-Gu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.166-166
    • /
    • 2017
  • OsTAT encodes a twin-arginine translocator (TAT) pathway signal protein. It contains a TRANS membrane domain and a chloroplast transit peptide. mRNA transcription profiling of OsTAT1 revealed that it is highly overexpressed in the leaves corroborating reports on its role in chloroplast. Moreover, its level of expression is more pronounced during earlier stages (germination, 3-leaf stage, and maximum tillering) of growth in rice. A lower disease progress curve of bacterial blight is evident in transgenic lines compared with the wild type, Dongjin indicating its involvement in immunity to Xoo. Expression pattern following infection of Xoo strain K2 depicts highest levels at 4 and 8 hour post-inoculation which implies crucial induction of resistance during early response. This study initially reports a new overview on the biological functions of plant's TAT pathway. Further molecular and genetic analyses are underway to provide detailed involvement of OsTAT in disease resistance.

  • PDF

Elimination of Aster Yellows Phytoplasma from Dendranthema grandiflorum by Application of Oxytetracycline as a Foliar Spray

  • Chung, Bong-Nam;Park, Gug-Seoun
    • The Plant Pathology Journal
    • /
    • v.18 no.2
    • /
    • pp.93-97
    • /
    • 2002
  • Aster yellows phytoplasma-infected chrysanthemums showing stunt, rosette, and excessive branching were treated with a foliar spray of 400 mg/I oxytetracycline at three-day interval for 1,2,3 and 4 months. Two months after the final treatment, new shoots from the recovered chrysanthemums showed the recurrence of the disease symptoms. However, cuttings from chrysanthemums treated with oxytetracycline did not express any photoplasma infection symptoms for more than 10 months. Also, chrysanthemums dipped in 100 mg/I oxytetracycline solution combined with a foliar spray of 400 mg/I oxytetracycline for 4 weeks showed the same results. Using an electron microscope, ultrathin sections of leaf midribs of chrysanthemum cuttings treated with oxytetracycline for 4 months did not show phytoplasma bodies 10 months after treatment. Nucleic acids from chrysanthemums, which did not express phytoplasma infection symptoms for more than 10 months, did not amplify 16S rRNA gene of phytoplasma by polymerase chain reaction. These results may have implications in the propagation of phytoplasma-free healthy stocks for a wide range of plant species.