DOI QR코드

DOI QR Code

Efficacy of Three Antiviral Agents and Resistant Cultivars on Tomato Yellow Leaf Curl Virus in Tomato

토마토황화잎말림바이러스병에 대한 저항성 품종과 항바이러스 활성 물질 3종의 효과 검증

  • Kwon, Yongnam (Gwangju Agriculture Technology & Extension) ;
  • Cha, Byeongjin (Department of Plant Medicine, Chungbuk National University) ;
  • Kim, Mikyeong (Department of Plant Medicine, Chungbuk National University)
  • Received : 2022.01.29
  • Accepted : 2022.04.14
  • Published : 2022.06.30

Abstract

Recently, several in vitro studies have reported antiviral activity of agents of systemic acquired resistance against plant virus infection, but the approach has not been applied in a wide range of agricultural fields. The objective of this study was to evaluate the inhibitory effect of the exogenous application of salicylic acid (SA), chitosan (CH), or eugenol (EG) in tomato yellow leaf curl virus (TYLCV) infection of greenhouse-grown tomato plants. In vitro, the initial time of symptom was observed in TYLCV-infected plants (VP) of the resistant cultivar 'Superdotaerang' at 12 days post inoculation (dpi) after application of antiviral agents. At 32 dpi, the disease rate of TYLCV in the CHT+VP (0.1% chitosan and virus infected control) treated plants was 87.5%, lower than that of the other treatment. However, the virus content in the CHT+VP treated plants was higher than those of the other treatments, and SA, EG, and CH did not show significant effect on plant height or shoot and root fresh weight. Our results from summer-cultivated greenhouse-grown tomatoes show that none of the tested agents had an inhibitory activity on viral infection or yield of tomato 'Dotaerangsola'cultivar. In contrast, all treated 'TY Giants' cultivars that possessed TYLCV resistance genes Ty-1 and Ty-3a did not show typical symptoms and the virus content was remarkably lower than those in the TYLCV treated plants in 'Superdotaerang'. The results of this research indicated that the planting of resistant tomato cultivars was effective method instead of using SA, EG, and CH (known as resistance-inducing factors for control) of TYLCV in the field.

최근에는 작물의 유도 저항성을 이용한 항바이러스제 개발에 관한 많은 연구가 수행되고 있으나 실제 농업현장에 널리 보급되지 못하고 있는 실정이다. 본 실험은 시설토마토 재배현장에 외생 살리실산, 키토산, 유제놀 처리에 따른 토마토황화잎말림바이러스(Tomato yellow leaf curl virus, TYLCV) 감염억제효과를 검증하고자 수행되었다. 실내검정에서 TYLCV에 감수성 품종인 '슈퍼도태랑'은 항바이러스제 처리 후 TYLCV에 감염된지 12일 후 VP (virus infected control plants)에서 바이러스 증상이 나타나기 시작했다. 접종 32일 후 TYLCV 발병도는 VP에서 98.8%였고, SAT (2 mM salicylic acid)+VP, EGT (200 ㎍/ml eugenol)+VP에서는 각각 98.8%, 98.7%로 발병도가 높았으나, CHT (0.1% chitosan)+VP는 85.7%로 다른 처리들과 통계적으로 유의한 차이를 보였다. 그러나 TYLCV 농도는 CHT+VP에서 OD값이 0.3으로 오히려 가장 높게 나타났으며, 토마토의 초장, 지상부 및 지하부 생체중에서도 뚜렷한 효과를 보이지 않았다. 여름작형 시설재배지에서 도태랑 계열의 토마토품종 '도태랑솔라'를 사용하여 항바이러스 3종의 효과를 조사한 결과, 수확기에 모든 처리구에서 100.0%에 가까운 TYLCV 감염률은 나타냈으며, 수확량에도 처리간의 통계적 유의차가 인정되지는 않았다. 이와 대조적으로 Ty-1과 Ty-3a 유전자를 보유한 TYLCV에 내병성 품종인 'TY자이언츠'는 저항성 유묘검정의 전 조사기간 동안 바이러스 증상이 전혀 관찰되지 않았고, 식물체내 바이러스 농도도 무접종 수준이었다. 본 실험 결과 'TY자이언츠' 품종은 TYLCV 발생이 만연한 지역 및 재배시기에 감수성 품종을 대체할 수 있을 것으로 생각된다. 반면, 저항성 유도물질인 살리실산, 유제놀, 키토산의 항바이러스 효과는 입증되지 않았기 때문에, 아직 시설토마토 재배현장에 적용하기는 어려울 것으로 판단된다.

Keywords

Acknowledgement

This study was carried out with the support of Cooperative Research program for Agricultural Science & Technology Development (Project No. PJ01487811) Rural Development Administration, Republic of Korea.

References

  1. Abd El-Gawad, H. G. and Bondok, A. M. 2015. Response of tomato plants to salicylic acid and chitosan under infection with Tomato mosaic virus. Am. Euras. J. Agric. Environ. Sci. 15: 1520-1529.
  2. Anfoka, G., Moshe, A., Fridman, L., Amrani, L., Rotem, O., Kolot, M. et al. 2016. Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures. Sci. Rep. 6: 19715. https://doi.org/10.1038/srep19715
  3. Brown, J. K., Zerbini, F. M., Navas-Castillo, J., Moriones, E., Ramos-Sobrinho, R., Silva, J. C. et al. 2015. Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Arch. Virol. 160: 1593-1619. https://doi.org/10.1007/s00705-015-2398-y
  4. Butterbach, P., Verlaan, M. G., Dullemans, A., Lohuis, D., Visser, R. G., Bai, Y. et al. 2014. Tomato yellow leaf curl virus resistance by Ty-1 involves increased cytosine methylation of viral genomes and is compromised by cucumber mosaic virus infection. Proc. Natl. Acad. Sci. U. S. A. 111: 12942-12947. https://doi.org/10.1073/pnas.1400894111
  5. Calil, I. P. and Fontes, E. P. B. 2017. Plant immunity against viruses: antiviral immune receptors in focus. Ann. Bot. 119: 711-723. https://doi.org/10.1093/aob/mcw200
  6. Choi, S. K., Choi, H. S., Yang, E. Y., Cho, I. S., Cho, J. D. and Chung, B. N. 2013. Construction of Tomato yellow leaf curl virus clones for resistance assessment in tomato plants. Korean J. Hortic. Sci. Technol. 31: 246-254. (In Korean) https://doi.org/10.7235/hort.2013.12169
  7. Cohen, S. and Harpaz, I. 1964. Periodic, rather than continual acquisition of a new tomato virus by its vector, the tobacco whitefly (Bemisia tabaci Gennadius). Entomol. Exp. Appl. 7: 155-166. https://doi.org/10.1111/j.1570-7458.1964.tb02435.x
  8. Cohen, S. and Lapidot, M. 2007. Appearance and expansion of TYLCV: a historical point of view. In: Tomato yellow leaf curl virus Disease: Management, Molecular Biology, Breeding for Resistance, ed. by H. Czosnek, pp. 3-12. Springer, Dordrecht, The Netherlands.
  9. Corrales-Gutierrez, M., Medina-Puche, L., Yu, Y., Wang, L., Ding, X., Luna, A. P. et al. 2020. The C4 protein from the geminivirus Tomato yellow leaf curl virus confers drought tolerance in Arabidopsis through an ABA-independent mechanism. Plant Biotechnol. J. 18: 1121-1123. https://doi.org/10.1111/pbi.13280
  10. Doares, S. H., Syrovets, T., Weiler, E. W. and Ryan, C. A. 1995. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc. Natl. Acad. Sci. U. S. A. 92: 4095-4098. https://doi.org/10.1073/pnas.92.10.4095
  11. Esmailzadeh, M., Soleimani, M. J. and Rouhani, H. 2008. Exogenous applications of salicylic acid for inducing systematic acquired resistance against tomato stem canker disease. J. Biol. Sci. 8: 1039-1044. https://doi.org/10.3923/jbs.2008.1039.1044
  12. Faoro, F. and Gozzo, F. 2015. Is modulating virus virulence by induced systemic resistance realistic? Plant Sci. 234: 1-13. https://doi.org/10.1016/j.plantsci.2015.01.011
  13. Fauquet, C. M., Briddon, R. W., Brown, J. K., Moriones, E., Stanley, J., Zerbini, M. et al. 2008. Geminivirus strain demarcation and nomenclature. Arch. Virol. 153: 783-821. https://doi.org/10.1007/s00705-008-0037-6
  14. Huot, B., Yao, J., Montgomery, B. L. and He, S. Y. 2014. Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant. 7: 1267-1287. https://doi.org/10.1093/mp/ssu049
  15. Iftikhar, Y., Mubeen, M., Sajid, A., Zeshan, M. A., Shakeel, Q., Abbas, A. et al. 2021. Effects of tomato leaf curl virus on growth and yield parameters of tomato Crop. Arab J. Plant Prot. 39: 79-83. https://doi.org/10.22268/AJPP-039.1.079083
  16. Iriti, M. and Varoni, E. M. 2015. Chitosan-induced antiviral activity and innate immunity in plants. Environ. Sci. Pollut. Res. 22: 2935-2944. https://doi.org/10.1007/s11356-014-3571-7
  17. Javaheri, M., Mashayekhi, K., Dadkhah, A. and Tavallaee, F. Z. 2012. Effects of salicylic acid on yield and quality characters of tomato fruit (Lycopersicum esculentum Mill.). Int. J. Agric. Crop Sci. 4: 1184-1187.
  18. Ji, Y., Schuster, D. J. and Scott, J. W. 2007. Ty-3, a Begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol. Breed. 20: 271-284. https://doi.org/10.1007/s11032-007-9089-7
  19. Jung, J., Kim, H. J., Lee, J. M., Oh, C. S., Lee, H.-J. and Yeam, I. 2015. Gene-based molecular marker system for multiple disease resistances in tomato against Tomato yellow leaf curl virus, late blight, and verticillium wilt. Euphytica 205: 599-613. https://doi.org/10.1007/s10681-015-1442-z
  20. Karasov, T. L., Chae, E., Herman, J. J. and Bergelson, J. 2017. Mechanisms to mitigate the trade-off between growth and defense. Plant Cell 29: 666-680. https://doi.org/10.1105/tpc.16.00931
  21. Khan, A., Kamran, M., Imran, M., Al-Harrasi, A., Al-Rawahi, A., Al-Amri, I. et al. 2019. Silicon and salicylic acid confer high-pH stress tolerance in tomato seedlings. Sci. Rep. 9: 19788. https://doi.org/10.1038/s41598-019-55651-4
  22. Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A. and Khan, N. A. 2015. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front. Plant Sci. 6: 462.
  23. Kil, E.-J., Byun, H.-S., Kim, S., Kim, J., Park, J., Cho, S. et al. 2014. Sweet pepper confirmed as a reservoir host for Tomato yellow leaf curl virus by both agro-inoculation and whitefly-mediated inoculation. Arch. Virol. 159: 2387-2395. https://doi.org/10.1007/s00705-014-2072-9
  24. Kim, C. S., Lee, K. S., Choi, H. S., Lee, K. Y., Lee, S. C., Kim, J. K. et al. 2012. Weed host for propagation of the Bemisia tabaci infected with TYLCV and its TYLCV infection. Korean J. Weed Sci. 32: 247-248. (In Korean)
  25. Kim, H.-Y., Lee, Y.-H., Kim, J.-H. and Kim, Y.-H. 2008. Comparison on the capability of four predatory mites to prey on the eggs of Bemisia tabaci (Hemiptera: Aleyrodidae). Korean J. Appl. Entomol. 47: 429-433. (In Korean) https://doi.org/10.5656/KSAE.2008.47.4.429
  26. Kim, W.-I., Kim, K.-H., Kim, Y.-B., Lee, H.-S., Shon, G.-M. and Park, Y.- H. 2013. Selection and characterization of horticultural traits of Tomato leaf curl virus (TYLCV)-resistant tomato cultivars. Korean J. Hortic. Sci. Technol. 31: 328-336. (In Korean) https://doi.org/10.7235/hort.2013.12186
  27. Koo, Y. M., Heo, A. Y. and Choi, H. W. 2020. Salicylic acid as a safe plant protector and growth regulator. Plant Pathol. J. 36: 1-10. https://doi.org/10.5423/PPJ.RW.12.2019.0295
  28. Kovacik, J., Gruz, J., Backor, M., Strnad, M. and Repcak, M. 2009. Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Rep. 28: 135-143. https://doi.org/10.1007/s00299-008-0627-5
  29. Lapidot, M., Friedmann, M., Pilowsky, M., Ben-Joseph, R. and Cohen, S. 2001. Effect of host plant resistance to Tomato yellow leaf curl virus (TYLCV) on virus acquisition and transmission by its whitefly vector. Phytopathology 91: 1209-1213. https://doi.org/10.1094/PHYTO.2001.91.12.1209
  30. Lapidot, M., Paran, I., Ben-Joseph, R., Ben-Harush, S., Pilowsky, M., Cohen, S. et al. 1997. Tolerance to cucumber mosaic virus in pepper: development of advanced breeding lines and evaluation of virus level. Plant Dis. 81: 185-188. https://doi.org/10.1094/pdis.1997.81.2.185
  31. Lee, M.-L., Ahn, S.-B. and Cho, W.-S. 2000. Morphological characteristics of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) and discrimination of their biotypes in Korea by DNA markers. Korean J. Appl. Entomol. 39: 5-12. (In Korean)
  32. Lee, Y, J., Kim M, K., Choi, H. S., Kwak, H. R., Seo, J. G., Lee, J. S. et al. 2013. Primer set for multiple detection tomato viruses that transmitted by whiteflies, and method for detecting said viruses using the same. Korea Patent No. 10-2013-0140576. (In Korean)
  33. Lee, Y.-S., Kim, J.-Y., Hong, S.-S., Park, J. and Park, H.-H. 2012. Occurrence of sweet-potato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) and its response to insecticide in Gyeonggi area. Korean J. Appl. Entomol. 51: 377-382. (In Korean) https://doi.org/10.5656/KSAE.2012.09.0.051
  34. Lefeuvre, P., Martin, D. P., Harkins, G., Lemey, P., Gray, A. J. A., Meredith, S. et al. 2010. The spread of Tomato yellow leaf curl virus from the Middle East to the world. PLoS Pathog. 6: e1001164. https://doi.org/10.1371/journal.ppat.1001164
  35. Legarrea, S., Barman, A., Marchant, W., Diffie, S. and Srinivasan, R. 2015. Temporal effects of a Begomovirus infection and host plant resistance on the preference and development of an insect vector, Bemisia tabaci, and implications for epidemics. PLoS ONE 10: e0142114. https://doi.org/10.1371/journal.pone.0142114
  36. Li, T., Huang, Y., Xu, Z.-S., Wang, F. and Xiong, A.-S. 2019. Salicylic acid-induced differential resistance to the Tomato yellow leaf curl virus among resistant and susceptible tomato cultivars. BMC Plant Biol. 19: 173. https://doi.org/10.1186/s12870-019-1784-0
  37. Li, Y., Muhammad, T., Wang, Y., Zhang, D., Crabbe, M. J. C. and Liang, Y. 2018. Salicylic acid collaborates with gene silencing to tomato defense against Tomato yellow leaf curl virus (TYLCV). Pak. J. Bot. 50: 2041-2054.
  38. Li, Y., Qin, L., Zhao, J., Muhammad, T., Cao, H., Li, H. et al. 2017. SlMAPK3 enhances tolerance to Tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum). PLoS ONE 12: e0172466. https://doi.org/10.1371/journal.pone.0172466
  39. Mishra, R., Shteinberg, M., Shkolnik, D., Anfoka, G., Czosnek, H. and Gorovits, R. 2022. Interplay between abiotic (drought) and biotic (virus) stresses in tomato plants. Mol. Plant Pathol. 22: 475-488.
  40. Mishra, S., Jagadeesh, K. S., Krishnaraj, P. U. and Prem, S. 2014. Biocontrol of tomato leaf curl virus (ToLCV) in tomato with chitosan supplemented formulations of Pseudomonas sp. under field conditions s. Aust. J. Crop Sci. 8: 347-355.
  41. Moriones, E. and Navas-Castillo, J. 2000. Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res. 71: 123-134. https://doi.org/10.1016/S0168-1702(00)00193-3
  42. Moriones, E., Navas-Castillo, J. and Diaz-Pendon, J. A. 2011. Emergence of Begomovirus diseases. In: Recent Advances in Plant Virology, eds. by C. Caranta, M. A. Aranda, M. Tepfer and J. J. Lopez-Moya, pp. 301-320. Caister Academic Press, Norfolk, UK.
  43. Nakhla, M. K. and Maxwell, D. P. 1998. Epidemiology and management of tomato yellow leaf curl disease. In: Plant Virus Disease Control, eds. by A. Hadidi, R. K. Khetarpal and H. Koganezawa, pp. 565-583. APS Press, St. Paul, MN, USA.
  44. Pasternak, T., Groot, E. P., Kazantsev, F. V., Teale, W., Omelyanchuk, N., Kovrizhnykh, V. et al. 2019. Salicylic acid affects root meristem patterning via auxin distribution in a concentration-dependent manner. Plant Physiol. 180: 1725-1739. https://doi.org/10.1104/pp.19.00130
  45. Polston, J. E. and Anderson, P. K. 1997. The emergence of whitefly-transmitted geminviruses in tomato in the western hemisphere. Plant Dis. 81: 1358-1369. https://doi.org/10.1094/PDIS.1997.81.12.1358
  46. Pospieszny, H., Chirkov, S. and Atabekov, J. 1991. Induction of antiviral resistance in plants by chitosan. Plant Sci. 79: 63-68. https://doi.org/10.1016/0168-9452(91)90070-O
  47. Pospieszny, H. 1997. Antiviroid activity of chitosan. Crop Prot. 16: 105-106. https://doi.org/10.1016/S0261-2194(96)00077-4
  48. Rashid, M. H., Hossain, I., Hannan, A., Uddin, S. A. and Hossain, M. A. 2008. Effect of different dates of planting time on prevalence of Tomato yellow leaf curl virus and whitefly of tomato. J. Soil Nat. 2: 1-6.
  49. Rendina, N., Nuzzaci, M., Scopa, A., Cuypers, A. and Sofo, A. 2019. Chitosan-elicited defense responses in Cucumber mosaic virus (CMV)-infected tomato plants. J. Plant Physiol. 234-235: 9-17. https://doi.org/10.1016/j.jplph.2019.01.003
  50. Rivas-San Vicente, M. and Plasencia, J. 2011. Salicylic acid beyond defence: its role in plant growth and development. J. Exp. Bot. 62: 3321-3338. https://doi.org/10.1093/jxb/err031
  51. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8: 1809-1819. https://doi.org/10.1105/tpc.8.10.1809
  52. Scott, J. W. 2007. Breeding for resistance to viral pathogens. In: Gentic Improvement of Solanaceous Crops, Vol. 2: Tomato, eds. by M. K. Razdan and A. K. Mattoo, pp. 457-485. CRC Press, Enfield, NH, USA.
  53. Seo, J.-K., Kim, M.-K., Kwak, H.-R., Choi, H.-S., Nam, M., Choe, J. et al. 2018. Molecular dissection of distinct symptoms induced by tomato chlorosis virus and Tomato yellow leaf curl virus based on comparative transcriptome analysis. Virology 516: 1-20. https://doi.org/10.1016/j.virol.2018.01.001
  54. Shang, J., Xi, D.-H., Xu, F., Wang, S.-D., Cao, S., Xu, M.-Y. et al. 2011. A broad-spectrum, efficient and nontransgenic approach to control plant viruses by application of salicylic acid and jasmonic acid. Planta 233: 299-308. https://doi.org/10.1007/s00425-010-1308-5
  55. Shteinberg, M., Mishra, R., Anfoka, G., Altaleb, M., Brotman, Y., Moshelion, M. et al. 2021. Tomato yellow leaf curl virus (TYLCV) promotes plant tolerance to drought. Cells 10: 2875. https://doi.org/10.3390/cells10112875
  56. Singh, A. K., Dwivedi, V., Rai, A., Pal, S., Reddy, S. G. E., Rao, D. K. V. et al. 2015. Virus-induced gene silencing of Withania somnifera squalene synthase negatively regulates sterol and defence-related genes resulting in reduced withanolides and biotic stress tolerance. Plant Biotechnol. J. 13: 1287-1299. https://doi.org/10.1111/pbi.12347
  57. Sun, W.-J., Lv, W.-J., Li, L.-N., Yin, G., Hang, X., Xue, Y. et al. 2016. Eugenol confers resistance to Tomato yellow leaf curl virus (TYLCV) by regulating the expression of SlPer1 in tomato plants. New Biotechnol. 33: 345-354. https://doi.org/10.1016/j.nbt.2016.01.001
  58. Tahmasebi, A., Zangeneh, M., Tahmasebi, A., Dizaji, A. and Habibi, M. K. 2011. Role of salicylic acid in resistance to plant viruses. Genet. Third Millenn. 8: 2203-2212. (In Persian)
  59. Tsai, W.-A., Weng, S.-H., Chen, M.-C., Lin, J.-S. and Tsai, W.-S. 2019. Priming of plant resistance to heat stress and tomato yellow leaf curl Thailand virus with plant-derived materials. Front. Plant Sci. 10: 906. https://doi.org/10.3389/fpls.2019.00906
  60. Verlaan, M. G., Hutton, S. F., Ibrahem, R. M., Kormelink, R., Visser, R. G. F., Scott, J. W. et al. 2013. The Tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA-dependent RNA polymerases. PLoS Genet. 9: e1003399. https://doi.org/10.1371/journal.pgen.1003399
  61. Wang, C. and Fan, Y. 2014. Eugenol enhances the resistance of tomato against Tomato yellow leaf curl virus. J. Sci. Food Agric. 94: 677-682. https://doi.org/10.1002/jsfa.6304
  62. Yalpani, N., Leon, J., Lawton, M. A. and Raskin, I. 1993. Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiol. 103: 315-321. https://doi.org/10.1104/pp.103.2.315
  63. Yang, X., Caro, M., Hutton, S. F., Scott, J. W., Guo, Y., Wang, X. et al. 2014. Fine mapping of the Tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato. Mol. Breed. 34: 749-760. https://doi.org/10.1007/s11032-014-0072-9
  64. Zamir, D., Ekstein-Michelson, I., Zakay, Y., Navot, N., Zeidan, M., Sarfatti, M. et al. 1994. Mapping and introgression of a Tomato yellow leaf curl virus tolerance gene, Ty-1. Theor. Appl. Genet. 88: 141-146. https://doi.org/10.1007/bf00225889
  65. Zeshan, M. A., Khan, M. A., Ali, K. S. and Arshad, M. 2016. Phenotypic evaluation of tomato germplasm for the source of resistance against tomato leaf curl virus disease. J. Anim. Plant Sci. 26: 194-200.