• Title/Summary/Keyword: Plant Leaf Disease

Search Result 776, Processing Time 0.025 seconds

Identification of Alternaria alternata as a Causal Agent for Leaf Blight in Syringa Species

  • Mmbaga, Margaret T.;Shi, Ainong;Kim, Mee-Sook
    • The Plant Pathology Journal
    • /
    • v.27 no.2
    • /
    • pp.120-127
    • /
    • 2011
  • While many isolates of Alternaria alternata are common saprophytes on trees and shrubs, this study clearly demonstrated that A. alternata is a primary pathogen in lilac (Syringa sp.), causing a leaf-blight that affects different Syringa species. Isolates of Alternaria sp. were collected from leaf blight samples of lilacs in the field. The internal transcribed spacer (ITS) region and morphological characterization were used to identify lilac blight pathogen. Based on 100% ITS nucleotide sequence identities to the Alternaria genus in the GenBank and morphological features, these isolates were identified as A. alternata. Disease symptoms were reproduced in lilac plants inoculated with A. alternata mycelial plugs and sprayed with a fungus-free culture filtrate, indicating that pathogenesis in lilac involves secondary metabolites or toxins. Diagnostic primers were developed to detect Alternaria sp. and A. alternata in lilac leaf blight based on ITS region and four known genes associated with pathogenesis in A. alternata: mixed-linked glucanase precursor, endopolygalacturonase, hsp70, and histone genes. The results from our study indicated A. alternata is a primary pathogen in lilac leaf blight, and these diagnostic primers can be used as a tool for the fast detection of A. alternata associated with lilac leaf blight.

Plant Disease Identification using Deep Neural Networks

  • Mukherjee, Subham;Kumar, Pradeep;Saini, Rajkumar;Roy, Partha Pratim;Dogra, Debi Prosad;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.233-238
    • /
    • 2017
  • Automatic identification of disease in plants from their leaves is one of the most challenging task to researchers. Diseases among plants degrade their performance and results into a huge reduction of agricultural products. Therefore, early and accurate diagnosis of such disease is of the utmost importance. The advancement in deep Convolutional Neural Network (CNN) has change the way of processing images as compared to traditional image processing techniques. Deep learning architectures are composed of multiple processing layers that learn the representations of data with multiple levels of abstraction. Therefore, proved highly effective in comparison to many state-of-the-art works. In this paper, we present a plant disease identification methodology from their leaves using deep CNNs. For this, we have adopted GoogLeNet that is considered a powerful architecture of deep learning to identify the disease types. Transfer learning has been used to fine tune the pre-trained model. An accuracy of 85.04% has been recorded in the identification of four disease class in Apple plant leaves. Finally, a comparison with other models has been performed to show the effectiveness of the approach.

Current Status of Cashew Leaf and Nut Blight Disease (Cryptosporiopsis spp.) and Screening of Elite Cashew Hybrids Developed in 1996 and 1998 against the Disease in Eastern and Southern Tanzania

  • Majune, Dadili Japhet;Masawe, Peter Albert;Mbega, Ernest Rashid
    • Research in Plant Disease
    • /
    • v.24 no.4
    • /
    • pp.265-275
    • /
    • 2018
  • Cashew (Anacardium occidentale L.) is an export crop and source of income in Tanzania. However, its productivity is challenged by insect pests and diseases. Cashew Leaf and Nut Blight Disease (CLNBD) caused by Cryptosporipsis spp. has been cited as one of the most devastating diseases in Tanzania. Studies were conducted to investigate incidences and severities of CLNBD on cashew in farmers' fields and elite cashew hybrids developed in 1996 and 1998 in eastern and southern zones of Tanzania. Furthermore, a screen house experiment was conducted to screen these hybrids against CLNBD at Naliendele Agricultural Research Institute (NARI), Mtwara, Tanzania. The results indicated significant differences (P<0.001) in CLNBD incidences and severities in cashew in farmers' fields across Bagamoyo, Nachingwea and Mtwara districts. Further, there were significant differences (P<0.001) among hybrids in CLNBD severities in the screen house experiment. In ranking the elite cashew hybrids, 38 were tolerant and 14 were susceptible to CLNBD. This observation suggests that elite cashew hybrids developed in 1996 and 1998 are more tolerant to CLNBD compared to cashew found in farmers' fields. These findings strongly suggest that the elite cashew hybrids can be recommended for commercial farming in Tanzania.

Bacillus sp. BS061 Suppresses Powdery Mildew and Gray Mold

  • Kim, Young-Sook;Song, Ja-Gyeong;Lee, In-Kyoung;Yeo, Woon-Hyung;Yun, Bong-Sik
    • Mycobiology
    • /
    • v.41 no.2
    • /
    • pp.108-111
    • /
    • 2013
  • The use of a microorganism, or its secretions, to prevent plant disease offers an attractive alternative or supplement to synthetic fungicides for the management of plant disease without the negative effects of chemical control mechanisms. During a screening for microorganisms with the potential to be used as microbial fungicides, Bacillus sp. BS061 was isolated from a plant leaf. The strain BS061 potently inhibited the mycelial growth of Botrytis cinerea, and significantly reduced disease incidence of powdery mildew in cucumber and strawberry. We also found that the culture filtrate of BS061 inhibited the mycelial growth of various plant pathogens.

Characterizing of Rice Blast Lesion Mimic

  • Lee, Joo-Hee;Jaw, Nam-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.68.1-68
    • /
    • 2003
  • When plants are infected by plant pathogens, typical disease symptom termed lesion, appears in compatible interaction. Whereas, in incompatible interactions, only small speck of lesions are visible on the leaf surfaces. Hypersensitive response (HR) of plant which is the result of infection by incompatible pathogens, is a well known defense response inducing rapid cell death resulting in complete resistance. However, some rice mutants show spontaneous disease symptoms during the growth stages without interaction with pathogens. We investigated the spontaneous cell death mutant called Blast Lesion Mimic(BLM) generated by EMS mutation, on the relationship with the hypersensitive response as well as resistant characteristics. Accumulation of phenolic compounds were detected around the lesions as lesions develop on leaf surface. Activation of PR gene was detected before the lesion appeared, and that result indicates the defense-related response are started earlier than lesion formation. The BLM mutant showed resistant response to inoculation of Magnaporthe grisea KJ201 with which the wild type Hwacheong is totally susceptible. Informations on the formation of spontaneous lesions and detail analysis of lesion mimic mutants and related genes are very limited to date. It is really important to understand the phenomenon of the defense-related lesion formation for developing resistant cultivar for rice blast pathogens

  • PDF

Detection, isolation, and characterization of the cucumber mosaic virus in Pseudostellaria heterophylla from Korea

  • Lee, Da Hyun;Kim, Jinki;Han, Jun Soo;Lee, Jae-Hyeon;Lee, ByulHaNa;Park, Chung Youl
    • Journal of Plant Biotechnology
    • /
    • v.47 no.2
    • /
    • pp.150-156
    • /
    • 2020
  • Weeds play an important role in the survival of viruses and are potential inoculum sources of viral diseases for crop plants. In this study, specimens of Pseudostellaria heterophylla exhibiting symptoms of the cucumber mosaic virus (CMV) were collected in Bonghwa, Korea. The characteristics of the disease were described and leaf RNA was extracted and sequenced to identify the virus. Three CMV contigs were obtained and PCR was performed using specific primer pairs. RNA from positive samples exhibiting CMV leaf symptoms was amplified to determine the coat protein. A sequence comparison of the coat protein gene from the CMV BH isolate shared the highest nucleotide identity (99.2%) with the CMV ZM isolate. Phylogenetic analysis showed that CMV-BH belonged to subgroup IA and that the most closely-related isolate was CMV-ZM. All test plants used for the biological assay were successfully infected with CMV and exhibited CMV disease symptoms such as blistering, mosaic, and vein yellowing. To our knowledge, this is the first report of CMV infection in P. heterophylla from Korea.

Isolate Virulence and Cultivar Response in the Winter Wheat: Pyrenophora tritici-repentis (Tan Spot) Pathosystem in Oklahoma

  • Kader, Kazi A.;Hunger, Robert M.;Payton, Mark E.
    • The Plant Pathology Journal
    • /
    • v.37 no.4
    • /
    • pp.339-346
    • /
    • 2021
  • Prevalence of tan spot of wheat caused by the fungus Pyrenophora tritici-repentis has become more prevalent in Oklahoma as no-till cultivation in wheat has increased. Hence, developing wheat varieties resistant to tan spot has been emphasized, and selecting pathogen isolates to screen for resistance to this disease is critical. Twelve isolates of P. tritici-repentis were used to inoculate 11 wheat cultivars in a greenhouse study in splitplot experiments. Virulence of isolates and cultivar resistance were measured in percent leaf area infection for all possible isolate x cultivar interactions. Isolates differed significantly (P < 0.01) in virulence on wheat cultivars, and cultivars differed significantly in disease reaction to isolates. Increased virulence of isolates detected increased variability in cultivar response (percent leaf area infection) (r = 0.56, P < 0.05) while increased susceptibility in cultivars detected increased variance in virulence of the isolates (r = 0.76, P < 0.01). A significant isolate × cultivar interaction indicated specificity between isolates and cultivars, however, cluster analysis indicated low to moderate physiological specialization. Similarity in wheat cultivars in response to pathogen isolates also was determined by cluster analysis. The use of diverse isolates of the fungus would facilitate evaluation of resistance in wheat cultivars to tan spot.

Defense Inducer Compounds Up-regulated the Peroxidase, Polyphenol Oxidase, and Total Phenol Activities against Spot Blotch Disease of Wheat

  • Puja Kumari;Chandrashekhar Azad;Ravi Ranjan Kumar;Jyoti Kumari;Kumar Aditya;Amarendra Kumar
    • The Plant Pathology Journal
    • /
    • v.39 no.2
    • /
    • pp.159-170
    • /
    • 2023
  • Spot blotch disease of wheat caused by Bipolaris sorokiniana (Sacc.) Shoem is considered as an economically important disease which affects all the growing stages of wheat crop. Therefore, it is important to search some effective management strategies against the spot blotch pathogen. Some synthetic elicitor compounds (salicylic acid, isonicotinic acid, and chitosan) and nano-particles (silver and aluminum) were tested against the pathogen to observe the change in biochemical activity and defense action of wheat plant against spot blotch disease. All the tested elicitor compounds and nano-particles showed a significant increase in activity of peroxidase, polyphenol oxidase (PPO), and total phenol over control. The highest increase in activity of peroxidase was recorded at 72 h from chitosan at 2 mM and 96 h from silver nano-particle at 100 ppm. Maximum PPO and total phenol activity were recorded from chitosan at 2 mM and silver nano-particle at 100 ppm as compared to pathogen-treated and healthy control. The lowest percent disease index, lowest no. of spots/leaf, and no. of infected leaves/plant were found in silver nano-particle at 100 ppm and chitosan at 2 mM, respectively. The use of defense inducer compounds results in significantly up-regulated enzymatic activity and reduced spot blotch disease. Therefore, chitosan and silver nano-particle could be used as alternative methods for the management of spot blotch disease.

A Super-Absorbent Polymer Combination Promotes Bacterial Aggressiveness Uncoupled from the Epiphytic Population

  • Lee, Bo-Young;Kim, Dal-Soo;Ryu, Choong-Min
    • The Plant Pathology Journal
    • /
    • v.24 no.3
    • /
    • pp.283-288
    • /
    • 2008
  • Plant leaf surface is an important niche for diverse epiphytic microbes, including bacteria and fungi. Plant leaf surface plays a critical frontline defense against pathogen infections. The objective of our study was to evaluate the effectiveness of a starch-based super-absorbent polymer(SAP) combination, which enhances water potential and nutrient availability to plant leaves. We evaluated the effect of SAP on the maintenance of bacterial populations. In order to monitor bacterial populations in situ, a SAP mixture containing Pseudomonas syringae pv. tabaci that expressed recombinant green fluorescent protein(GFPuv) was spray-challenged onto whole leaves of Nicotiana benthamiana. The SAP combination treatment enhanced bacterial robustness, as indicated by disease severity and incidence. Unexpectedly, bacterial numbers were not significantly different between leaves treated with the SAP combination and those treated with water alone. Furthermore, young leaves treated with the SAP combination had more severe symptoms and a greater number of bacterial spots caused by primary and secondary infections compared to young leaves treated with the water control. In contrast, bacterial cell numbers did not statistically differ between the two groups, which indicated that measurement of viable GFP-based bacterial spots may provide a more sensitive methodology for assessing virulence of bacterial pathogens than methods that require dilution plating following maceration of bacterial-inoculated leaf tissue. Our study suggests that the SAP combination successfully increased bacterial aggressiveness, which could either be used to promote the ability of biological agents to control weedy plants or increase the robustness of saprophytic epiphytes against competition from potentially harmful microbes.

Stemphylium Leaf Blight of Garlic (Allium sativum) in Spain: Taxonomy and In Vitro Fungicide Response

  • Galvez, Laura;Gil-Serna, Jessica;Garcia, Marta;Iglesias, Concepcion;Palmero, Daniel
    • The Plant Pathology Journal
    • /
    • v.32 no.5
    • /
    • pp.388-395
    • /
    • 2016
  • The most serious aerial disease of garlic is leaf blight caused by Stemphylium spp. Geographical variation in the causal agent of this disease is indicated. Stemphylium vesicarium has been reported in Spain, whereas S. solani is the most prevalent species recorded in China. In this study, Stemphylium isolates were obtained from symptomatic garlic plants sampled from the main Spanish production areas. Sequence data for the ITS1-5.8S-ITS2 region enabled assignation of the isolates to the Pleospora herbarum complex and clearly distinguished the isolates from S. solani. Conidial morphology of the isolates corresponded to that of S. vesicarium and clearly discriminated them from S. alfalfae and S. herbarum on the basis of the size and septation pattern of mature conidia. Conidial morphology as well as conidial length, width and length:width ratio also allowed the Spanish isolates to be distinguished from S. botryosum and S. herbarum. Control of leaf blight of garlic is not well established. Few studies are available regarding the effectiveness of chemical treatments to reduce Stemphylium spp. incidence on garlic. The effectiveness of nine fungicides of different chemical groups to reduce Stemphylium mycelial growth in vitro was tested. Boscalid + pyraclostrobin (group name, succinate dehydrogenase inhibitors + quinone outside inhibitors), iprodione (dicar-boximide), and prochloraz (demethylation inhibitors) were highly effective at reducing mycelial growth in S. vesicarium with $EC_{50}$ values less than 5 ppm. In general, the effectiveness of the fungicide was enhanced with increasing dosage.