• Title/Summary/Keyword: Plant Growth

Search Result 10,096, Processing Time 0.042 seconds

Effect of Chemical Forms of Nitrogen Fertilizers on Rice Growth and Soil Characteristics (시용(施用) 질소(窒素)의 화학적(化學的) 형태(形態)가 수도생육(水稻生育) 및 토양특성(土壤特性)에 미치는 영향(影響))

  • Yoo, Sun-Ho;Song, Kwan-Cheol;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.3
    • /
    • pp.242-252
    • /
    • 1984
  • A port experiment was conducted to compare the effect of chemical forms of nitrogen fertilizers on the rice growth and soil characteristics. The nitrogen fertilizers used for this study were ammonium sulfate, ammonium nitrate, ammonium chloride and urea. The results are summarized as follows. 1. The differences in pH of the soil and surface water between treatments during the first week after fertilizer application were great and the pH values were in the order of urea > ammonium nitrate > ammonium sulfate > ammonium chloride treatment. However the differences were insignificant after the first week. 2. The differences in pH of the air-dried soil somewhat increased and pH values were in the order of urea > ammonium nitrate > ammonium chloride > ammonium sulfate treatment. 3. Sulfur contents of the soil and the rice leaf and N content of the rice leaf were highest when ammonium sulfate was applied. But there were few differences between the treatments in total N content of the soil and in P, K, Ca and Mg contents of the soil and the rice leaf. 4. Number of tillers and dry matter weight of the rice plant were highest in ammonium sulfate plot throughout all the growing stages. 5. Number of panicle per hill was highest in ammonium sulfate plot, and this brought the highest grain yield in ammonium sulfate plot. The lowest grain yield in ammonium nitrate plot resulted from the lowest number of panicle per hill and ripened grain ratio.

  • PDF

Effect of Continual Application of Liquid Pig Manure on Malting Barley Growth and Soil Environment in Double Cropping System of Rice-Malting Barley (벼.맥주보리 작부체계에서 돈분액비 연용이 맥주보리 생육과 토양 환경에 미치는 영향)

  • Lee, Seong-Tae;Seo, Dong-Cheol;Kim, Eun-Seok;Song, Won-Doo;Lee, Won-Gyu;Heo, Jong-Soo;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.341-348
    • /
    • 2010
  • To investigate the effect of continual pre-plant application of liquid pig manure (LPM) on malting barley growth, quality and soil environment in double cropping system of rice and malting barley, the liquid pig manure was applied after harvesting rice and malting barley for 3 years. Field experiment was designed with non-fertilizer, chemical fertilizer (CF) recommended by soil testing, rice (LPM 50%+CF 50%)+malting barley (CF 100%), rice (LPM 50%+CF 50%)+malting barley (LPM 50%+CF 50%), rice (LPM 100%)+malting barley (CF 100%) and rice (LPM 100%)+malting barley (LPM 100%). By continuous application of LPM 100%, the contents of available $P_2O_5$ and exchangeable K in the soil were increased. The available $P_2O_5$ increased from 243 to 350 mg $kg^{-1}$ and exchangeable K was changed 0.31 to 0.44 $cmol_{c}\;kg^{-1}$. However, the contents of available $P_2O_5$ and exchangeable K were not significant changes in rice (LPM 50%+CF 50%)+malting barley (LPM 50%+CF 50%) plot. Bulk density of soil was not affected by application of LPM. The microbial density was high in order of bacteria > actinomycetes > fungi. The population of aerobic bacteria in rice (LPM 100%)+malting barley (LPM 100%) plot was higher than other plots. The ratio of aerobic bacteria/fungi and biomass C content were the highest in rice (LPM 100%)+malting barley (LPM 100%) plot. The yield of malting barley was increased 22% by increasing culm length, panicle length, No. of panicle and 1,000 grains as 358 kg $10a^{-1}$ in rice (LPM 100%)+malting barley (LPM 100%) plot compared with 294 kg $10a^{-1}$ in rice (CF 100%)+malting barley (CF 100%) plot. The content of ${\beta}$-glucan was low by 4.5 and 4.4% in non-fertilizer and rice (CF 100%)+malting barley (CF 100%) plot, respectively. The content of crude protein was the lowest by 8.2% in non-fertilizer and rice (CF 100%)+malting barley (CF 100%) plot and the quality of malting barley was good as within 11%.

The Effect of Nitrogen Rates on The Growth and Yield of Maize in Agricultural Fields with the Stream (하천변 농경지에서 질소 시비량 차이가 옥수수 생육 및 수량에 미치는 영향)

  • Lim, Jung Taek;Chang, Jae-Hyuk;Rho, Ye-Jin;Ryu, Jin-Hee;Chung, Dong Young;Cho, Jin-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.1
    • /
    • pp.101-108
    • /
    • 2014
  • This study was conducted to investigate the effect of nitrogen rates on the growth characteristics and yield of maize in agricultural fields with the stream. This indicates the necessity and optimal level of nitrous fertilization to examine the possibilities of quantity enhancement. Plant height and ear height of maize were not significantly different among the nitrogen rates. Stem diameter and leaf area index increased in the nitrogen treatment compared to untreated control. Changes of photosynthetic rate in maize leaves depending on nitrogen treatments increased as much as nitrogen rates were increased up to the highest level, 36 kg per 10a. NDF and ADF content levels of maize were investigated with different nitrogen rates regardless of treatments. In the case of NDF, it showed a tendency to decrease after 8 days of tasseling date. ADF had also decreased after 15 days of tasseling date. Nitrogen uptake of maize leaves with different nitrogen rates showed the highest level, $4.9g\;kg^{-1}$ with 36 kg per 10a on the tasseling date. Ear length and 100-kernel weight, there were no significant differences according to yield and the components with different nitrogen rates. Ear diameter and kernel number, nitrogen rates of 18 kg and 36 kg were increased compared to nitrogen rate of 9 kg per 10a and untreated control. The pericarps in 9 kg nitrogen rate and control were thicker than those of 18 kg and 36 kg treatment. The yield, 18 kg, 36 kg, and 9 kg treatments were increased by 10.96%, 9.27%, and 3.31%, compared to control. The component analysis on maize kernel with different nitrogen rates, starch showed no significant differences among treatments. Total sugar in 18 kg nitrogen treatment represented the highest content level, 6.37%. In addition, Amylopectin in 18 kg treatment showed the highest content level of 90.38%. However, amylose in 18 kg treatment showed the lowest level, 9.62% which drew a conclusion that waxy of 18 kg treatment is considered to be the strongest one. From the results described above, nitrous fertilization is essential to grow maize in agricultural fields with the stream. The optimum level of nitrous fertilization is considered 18 kg per 10a.

Growth Characteristics and Forage Productivity of New Forage Barley Variety, 'Miho' (청보리 신품종 '미호'의 생육특성과 수량성)

  • Oh, Young-Jin;Park, Tae-Il;Park, Hyoung-Ho;Han, Ouk-Kyu;Song, Tae-Hwa;Park, Jong-Chul;Kim, Yang-Kil;Park, Jong-Ho;Kang, Hyeon-Jung;Kang, Chon-Sik;Cheong, Young-Keun;Kim, Kyong-Ho;Kim, Bo-Kyeong;Yun, Geon-Sig;Hong, Gi-Heung;Bae, Jeong-Suk;Lee, Seong-Tae
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.4
    • /
    • pp.370-375
    • /
    • 2016
  • The purpose of development new variety 'Miho' (Hordeum vulgare L.) is a favorite with livestock feed and develop varieties resistant to disease and lodging. 'Miho' was carrying out the growth habit of group III with green and mid-wide leaf. Awn that is related to preference of livestock is a semi-smooth awn. This cultivar had 96 cm of culm length, 650 of spikes $per\;m^2$. Heading date of 'Miho' was April 27, and maturing date on May 30, which were later than cultivar 'Youngyang'. It also showed strong winter hardiness, and similar resistance to shattering and bariy yellow mosaic virus (BaYMV) compared with those of check one. The best thing among the traits of a good quality with the plant green at the latter growing period. The average forage dry matter yield in the regional yield trial was about 13.1, 12.1 MT per ha in upland and paddy field, respectively, which were 9%, 2% higher than that of the check cultivar. It's also showed 6.8% crude protein, 27.1% ADF (acid detergent fiber), and 67.5% TDN (total digestible nutrients), including higher silage quality for whole crop barley. This cultivar would be suitable for the area whose average minimum temperature was above $-8^{\circ}C$ January in Korean peninsula.

Predicting Regional Soybean Yield using Crop Growth Simulation Model (작물 생육 모델을 이용한 지역단위 콩 수량 예측)

  • Ban, Ho-Young;Choi, Doug-Hwan;Ahn, Joong-Bae;Lee, Byun-Woo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.699-708
    • /
    • 2017
  • The present study was to develop an approach for predicting soybean yield using a crop growth simulation model at the regional level where the detailed and site-specific information on cultivation management practices is not easily accessible for model input. CROPGRO-Soybean model included in Decision Support System for Agrotechnology Transfer (DSSAT) was employed for this study, and Illinois which is a major soybean production region of USA was selected as a study region. As a first step to predict soybean yield of Illinois using CROPGRO-Soybean model, genetic coefficients representative for each soybean maturity group (MG I~VI) were estimated through sowing date experiments using domestic and foreign cultivars with diverse maturity in Seoul National University Farm ($37.27^{\circ}N$, $126.99^{\circ}E$) for two years. The model using the representative genetic coefficients simulated the developmental stages of cultivars within each maturity group fairly well. Soybean yields for the grids of $10km{\times}10km$ in Illinois state were simulated from 2,000 to 2,011 with weather data under 18 simulation conditions including the combinations of three maturity groups, three seeding dates and two irrigation regimes. Planting dates and maturity groups were assigned differently to the three sub-regions divided longitudinally. The yearly state yields that were estimated by averaging all the grid yields simulated under non-irrigated and fully-Irrigated conditions showed a big difference from the statistical yields and did not explain the annual trend of yield increase due to the improved cultivation technologies. Using the grain yield data of 9 agricultural districts in Illinois observed and estimated from the simulated grid yield under 18 simulation conditions, a multiple regression model was constructed to estimate soybean yield at agricultural district level. In this model a year variable was also added to reflect the yearly yield trend. This model explained the yearly and district yield variation fairly well with a determination coefficients of $R^2=0.61$ (n = 108). Yearly state yields which were calculated by weighting the model-estimated yearly average agricultural district yield by the cultivation area of each agricultural district showed very close correspondence ($R^2=0.80$) to the yearly statistical state yields. Furthermore, the model predicted state yield fairly well in 2012 in which data were not used for the model construction and severe yield reduction was recorded due to drought.

Effect of Fish Meal Liquid Fertilizer Application on Soil Characteristics and Growth of Cucumber(Cucumis sativus L.) for Organic Culture (유기농 오이재배를 위한 어분액비 공급이 토양특성 및 오이 수량에 미치는 영향)

  • An, Nan-Hee;Cho, Jung-Rai;Gu, Ja-Sun;Kim, Young-ki;Han, Eun-Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.13-21
    • /
    • 2017
  • This study was carried out to evaluate the application effects of fish meal liquid fertilizer on soil characteristics and growth of cucumber for organic cultivation. Cucumber in greenhouse was transplanted on March $31^{th}$ in 2016, and the experimental treatments involve six treatments: No fertilizer, 0, 25, 50, and 100 mg/L N application by fish meal liquid fertilizer and chemical fertilizer. In the results of soil chemical property, application of 100 mg/L of fish meal liquid fertilizer showed a significant differences in pH, K, and Mg contents. The soil microbial community varied in relation to the fish meal liquid fertilizer treatments. Microbial biomass was lower in the chemical fertilizer than in the liquid fertilizer treatment. Result of principal component analysis obtained from Ecoplate showed that fish meal liquid fertilizer treatments, no liquid fertilizer, chemical fertilizer, and no fertilizer were divided into distinct groups, with the no fertilizer treatment located furthest from the other treatments. There were no significant differences in plant height of cucumber between the fish meal liquid fertilizer treatments and chemical fertilizer treatments. Also, the cucumber yield did not vary significantly between the concentrations of liquid fertilizers, and there were also no significant differences in the yield among the fish meal liquid and chemical fertilizer treatments. In conclusion, it is suggested that the application of fish meal liquid fertilizer can be used as a additional fertilizer for cucumber production with organic culture in greenhouse.

Synthesis of Artificial Zeolite from Fly Ash for Preparing Nursery Bed Soils and the Effects on the Growth of Chinese Cabbage (석탄회(石炭灰)를 이용한 육묘(育苗) 상토용(床土用) 인공(人工) 제올라이트의 제조와 배추 생육에 미치는 효과(效果))

  • Kim, Yong-Woong;Lee, Hyun-Hee;Yoon, Chung-Han;Shin, Bang-Sup;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.95-106
    • /
    • 1998
  • To reduce the environmental contamination and to utilize fly ash massively produced from the coal power plant every year, we synthesized the artificial zeolite using fly ash treated with alkaline, and then analyzed the mineralogical and morphological properties by X-ray, IR, and SEM. The amount of $NH_4{^+}$, $K^+$, and $H_2PO_4{^-}$ adsorbed by the fly ash and the artificial zeolite were determined with reaction time, amount of adsorbate used, ion concentrations. The results obtained from the pot experiments packed with the top soil, amended with granulated artificial zeolite which was made by treatment of 4% polyvinylalcohol, showed that CEC of the artificial zeolite was $257.7cmol^+kg^{-1}$, that was almost 36 times greater than that of fly ash. The ratio of $SiO_2/Al_2O_3$ decreased but the amount of Na increased. The physico-chemical properties analyzed by X-ray, IT, and SEM represented that the artificial zeolite synthesized had a similar morphological structure to that of the natural zeolite. The structures of the artificial zeolite had a significantly enlarged surface having a lot of pores, while the fly ash looked like spherical smooth shape with having not pores on the surface. Thus, the artificial zeolite was successfully synthesized. The results of adsorption isotherms of fly ash and artificial zeolite showed that the amount of $NH_4{^+}$, $K^+$, and $H_2PO_4{^-}$ adsorbed increased as the equilibrium concentration increased, while $NH_4{^+}$ was strongly adsorbed on the surface of fly ash and artificial zeolite than that of $K^+$. The most distinctive growth of Chinese cabbage was found from the top soil(NPK + soils + 20% of granulated artificial zeolite + 5% of compost). Therefore, we concluded that one of the most effective methods to effectively recycle a fly ash was to make the artificial zeolite as we did in this experiment.

  • PDF

Physiological Respone of Rice Plant Enviromental Stress II Effect of low temperature on the contents of chlorophyll, nitrogen and potassium m leading local and IR667 (환경장애(環境障碍)에 대(對)한 수도(水稻)의 생리반응(生理反應) II IR667계통(系統)과 장려품종(奬勵品種)의 엽녹소질소(葉綠素窒素) 및 가리함량(加里含量)에 대(對)한 저온(低溫)의 영향(影響))

  • Park, Hoon;Kim, Young Woo;Kim, Yung Sup
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.4
    • /
    • pp.231-237
    • /
    • 1973
  • Eeffect of temperature (3-day or 7-day treatment under $15^{\circ}C$, $20^{\circ}C$ and $25^{\circ}C$) on chlorophyll, nitrogen and potassium content in the second leaf blade from top of IR667 line (Suwon 213 and 214) and leading local varieties (Jinheung and Paldal) was investigated at the end of nursery, maximum tillering and flowering stage using phytotron. 1. Chlorophyll content was higher in IR667 line than in the local at $25^{\circ}C$ but reversed at $20^{\circ}C$ or $15^{\circ}C$ and chlorophyll a/b value was always high in the local. 2. Chlorophyll content per fresh weight decreased with growth and low temperature effect was greater at the end of nursery and on chlorophyll a than on chlorophyll b. 3. Chlorophyll a/b value increases with the increase of chlorophyll content and the increasing rate of chl. a/b value per chlorophyll increment tends to decrease under unfavorable condition. This decrease is greater in low temperature sensitive IR667 than local varieties. 4. According to chlorophyll retention value IR667 line was weaker at low temperature. 5. The content of total nitrogen or soluble nitrogen (methanol soluble) was decreased by low temperature. 6. Chl. (a+b)/S-N value decreased with growth and seemed not to be greatly affected by temperature and always higher in the local. 7. Potassium content (total or methanol soluble) tends to decrease at low temperature and soluble K increased with chlorophyll content. 8. High yielding ability of IR667 seems to be attributable to its high chlorophyll content at high temperature and easy leaf discoloration by low temperature or by nitrogen depression of IR667 seems to be attributable to the low Chl./S-N value.

  • PDF

Forsythiae Fructus Induces VEGF Production via p38 MAPK Activation in Human Keratinocytes (각질형성세포에서 p38 MAPK 활성을 통한 연교의 VEGF 생성 효과)

  • Kim, Mi-Sun;Choi, Yun Ho;Park, Sun Gyoo;Lee, Cheon Koo;Lee, Sang Hwa
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.4
    • /
    • pp.329-336
    • /
    • 2016
  • Cutaneous microvasculature plays a critical role in age-associated skin changes. A considerable reduction of number and size of vessels has been observed in the upper dermis of elderly skin. Forsythiae fructus (FF), the dried fruit of plant Forsythia suspensa (F. suspensa), has been traditionally used as an herbal medicine to treat inflammatory diseases and bacterial diseases. However, its regulatory effect on angiogenic responses has not been elucidated in skin. Therefore, we analyzed secretory profiles upon treatment of FF extract using array designed to detect angiogenesis-associated mediators in human keratinocytes. Because keratinocyte-derived VEGF (vascular endothelial growth factor) has been regarded as a potent factor for new microvasculature under the epidermis, we further investigated the effect of FF extract on VEGF production. We observed that the VEGF expression of mRNA and protein level was increased by about 2 folds in a dose-dependent manner after FF extract treatment. In signaling experiments, FF extract induced rapid p38 MAPK activation within 5 min, and the activation was totally abrogated by pretreatment with a p38 MAPK specific inhibitor. The FF-induced VEGF upregulation was also significantly attenuated by a p38 MAPK inhibition. Taken together, FF extract induces VEGF production via p38 MAPK activation in human epidermal keratinocytes. These novel findings suggest that FF is useful as a potential agent with pro-angiogenic activity and may help to improve age-dependent reduction of the microvasculature in aged skin or to heal skin wound.

Comparison of Wetting and Drying Characteristics in Differently Textured Soils under Drip Irrigation (점적관개 시 토성별 습윤.건조 특성 비교)

  • Kim, Hak-Jin;Son, Dong-Wook;Hur, Seung-Oh;Roh, Mi-Young;Jung, Ki-Yuol;Park, Jong-Min;Rhee, Joong-Yong;Lee, Dong-Hoon
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.309-315
    • /
    • 2009
  • Maintenance of adequate soil water content during the period of crop growth is necessary to support optimum plant growth and yields. A better understanding of soil water movement for precision irrigation would allow efficient supply of water to crops, thereby resulting in minimization of water drainage and contamination of ground water. This research reports on the characterization of spatial and temporal variations in water contents through three different textured soils, such as loam, sandy loam, and loamy sand, when water is applied on the soil surface using an one-line drip irrigation system and the soils are dried after the irrigation stops, respectively. Water contents through each soil profile were continuously monitored using three Sentek probes, each consisting of three capacitance sensors at 10, 20, and 30cm depths. Spatial variability in water content for each soil type was strongly influenced by soil textural class. There were big differences in wetting pattern and the rate of downward movement between loam and sandy loam soils, showing that the loam soil had a wider wetting pattern and a slower rate of downward movement than did the sandy loam soil. The wetting pattern in loamy sand soil was not apparent due to a low variability in water content (< 10%) by a lower-water holding capacity as compared to those measured in the loam and sandy loam soils, implying that the rate of water drainage below a depth of 30cm was high. When soils were dried, there were highly exponential relationships between water content and time elapsed after irrigation stops ($r^2$${\geq}$0.98). It was estimated that equilibrium moisture contents for loam, sandy loam, and loamy sand soils would be 17.6%, 6.2%, and 4.2%, respectively.