Browse > Article
http://dx.doi.org/10.15230/SCSK.2016.42.4.329

Forsythiae Fructus Induces VEGF Production via p38 MAPK Activation in Human Keratinocytes  

Kim, Mi-Sun (R&D Center, LG Household & Healthcare Ltd.)
Choi, Yun Ho (R&D Center, LG Household & Healthcare Ltd.)
Park, Sun Gyoo (R&D Center, LG Household & Healthcare Ltd.)
Lee, Cheon Koo (R&D Center, LG Household & Healthcare Ltd.)
Lee, Sang Hwa (R&D Center, LG Household & Healthcare Ltd.)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.42, no.4, 2016 , pp. 329-336 More about this Journal
Abstract
Cutaneous microvasculature plays a critical role in age-associated skin changes. A considerable reduction of number and size of vessels has been observed in the upper dermis of elderly skin. Forsythiae fructus (FF), the dried fruit of plant Forsythia suspensa (F. suspensa), has been traditionally used as an herbal medicine to treat inflammatory diseases and bacterial diseases. However, its regulatory effect on angiogenic responses has not been elucidated in skin. Therefore, we analyzed secretory profiles upon treatment of FF extract using array designed to detect angiogenesis-associated mediators in human keratinocytes. Because keratinocyte-derived VEGF (vascular endothelial growth factor) has been regarded as a potent factor for new microvasculature under the epidermis, we further investigated the effect of FF extract on VEGF production. We observed that the VEGF expression of mRNA and protein level was increased by about 2 folds in a dose-dependent manner after FF extract treatment. In signaling experiments, FF extract induced rapid p38 MAPK activation within 5 min, and the activation was totally abrogated by pretreatment with a p38 MAPK specific inhibitor. The FF-induced VEGF upregulation was also significantly attenuated by a p38 MAPK inhibition. Taken together, FF extract induces VEGF production via p38 MAPK activation in human epidermal keratinocytes. These novel findings suggest that FF is useful as a potential agent with pro-angiogenic activity and may help to improve age-dependent reduction of the microvasculature in aged skin or to heal skin wound.
Keywords
Forsythiae fructus; VEGF; p38 MAPK; skin angiogenesis; skin aging;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. E. Johnson and T. A. Wilgus, Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair, Adv. Wound Care, 3(10), 647 (2014).   DOI
2 M. Sawane and K. Kajiya, Ultraviolet light-induced changes of lymphatic and blood vasculature in skin and their molecular mechanisms, Exp. Dermatol., 21(S1), 22 (2012).   DOI
3 J. H. Chung and H. C. Eun, Angiogenesis in skin aging and photoaging, J. Dermatol., 34(9), 593 (2007).   DOI
4 Y. P. Guo, L. G. Lin, and Y. T. Wang, Chemistry and pharmacology of the herb pair Flos Lonicerae japonicae-Forsythiae fructus, Chin. Med., 10, 16 (2015).   DOI
5 H. S. Kang, J. Y. Lee, and C. J. Kim, Anti-inflammatory activity of arctigenin from Forsythiae fructus, J. Ethnopharmacol., 116(2), 305 (2008).   DOI
6 J. H. Lee, J. Y. Lee, T. D. Kim, and C. J. Kim, Antiasthmatic action of dibenzylbutyrolactone lignans from fruits of Forsythia viridissima on asthmatic responses to ovalbumin challenge in conscious guinea-pigs, Phytother. Res., 25(3), 387 (2011).   DOI
7 P. C. Kuo, G. F. Chen, M. L. Yang, Y. H. Lin, and C. C. Peng, Chemical constituents from the fruits of Forsythia suspensa and their antimicrobial activity, BioMed Res. Int., 2014, 304830 (2014).
8 A. G. Gunin, V. V. Petrov, N. N. Golubtzova, O. V. Vasilieva, and N. K. Kornilova, Age-related changes in angiogenesis in human dermis, Exp. Gerontol., 55, 143 (2014).   DOI
9 J. M. Waller and H. I. Maibach, Age and skin structure and function, a quantitative approach (I): blood flow, pH, thickness, and ultrasound echogenicity, Skin Res. Technol., 11(4), 221 (2005).   DOI
10 I. Bentov and M. J. Reed, The effect of aging on the cutaneous microvasculature, Microvasc. Res., 100, 25 (2015).   DOI
11 J. H. Chung, J. Y. Seo, H. R. Choi, M. K. Lee, C. S. Youn, G. Rhie, K. H. Cho, K. H. Kim, K. C. Park, and H. C. Eun, Modulation of skin collagen metabolism in aged and photoaged human skin in vivo, J. Invest. Dermatol., 117(5), 1218 (2001).   DOI
12 J. H. Chung, K. Yano, M. K. Lee, C. S. Youn, J. Y. Seo, K. H. Kim, K. H. Cho, H. C. Eun, and M. Detmar, Differential effects of photoaging vs intrinsic aging on the vascularization of human skin, Arch. Dermatol., 138(11), 1437 (2002).
13 D. Vybohova, Y. Mellova, K. Adamicova, M. Adamkov, and G. Heskova, Quantitative changes of the capillary bed in aging human skin, Histol. Histopathol., 27(7), 961 (2012).
14 M. S. Kim, Y. J. Oh, S. Lee, J. E. Kim, K. H. Kin, and J. H. Chung, Ultraviolet radiation attenuates thrombospondin 1 expression via PI3K-Akt activation in human keratinocytes, Photochem. Photobiol., 82(3), 645 (2006).   DOI
15 Y. Zhang, Y. Deng, T. Luther, M. Muller, R. Ziegler, R. Waldherr, D. M. Stern, and P. P. Nawroth, Tissue factor controls the balance of angiogenic and antiangiogenic properties of tumor cells in mice, J. Clin. Invest., 94(3), 1320 (1994).   DOI
16 K. Yano, K. Kadoya, K. Kajiya, Y. K. Hong, and M. Detmar, Ultraviolet B irradiation of human skin induces an angiogenic switch that is mediated by upregulation of vascular endothelial growth factor and by downregulation of thrombospondin-1, Brit. J. Dermatol., 152(1), 115 (2005).   DOI
17 M. S. Kim, Y. K. Kim, H. C. Eun, K. H. Cho, and J. H. Chung, All-trans retinoic acid antagonizes UV-induced VEGF production and angiogenesis via the inhibition of ERK activation in human skin keratinocytes, J. Invest. Dermatol., 126(12), 2697 (2006).   DOI
18 S. Vandekeere, M. Dewerchin, and P. Carmeliet, Angiogenesis revisited: an overlooked role of endothelial cell metabolism in vessel sprouting, Microcirculation, 22(7), 509 (2015).   DOI
19 K. Kajiya, Y. K. Kim, Y. Kinemura, J. Kishimoto, and J. H. Chung, Structural alterations of the cutaneous vasculature in aged and in photoaged human skin in vivo, J. Dermatol. Sci., 61(3), 206 (2011).   DOI
20 Y. Tsuchida, The effect of aging and arteriosclerosis on human skin blood flow, J. Dermatol. Sci., 5(3), 175 (1993).   DOI
21 T. D. Crafts, A. R. Jensen, E. C. Blocher-Smith, and T. A. Markel, Vascular endothelial growth factor: therapeutic possibilities and challenges for the treatment of ischemia, Cytokine, 71(2), 385 (2015).   DOI
22 S. Barrientos, O. Stojadinovic, M. S. Golinko, H. Brem, and M. Tomic-Canic, Growth factors and cytokines in wound healing, Wound Repair Regen., 16(5), 585 (2008).   DOI
23 R. S. Ishak, S. A. Aad, A. Kyei, and F. S. Farhat, Cutaneous manifestations of anti-angiogenic therapy in oncology: review with focus on VEGF inhibitors, Crit. Rev. Oncol. Hematol., 90(2), 152 (2014).   DOI
24 X. Pan, X. Cao, N. Li, Y. Xu, Q. Wu, J. Bai, Z. Yin, L. Luo, and L. Lan, Forsythin inhibits lipopolysaccharide- induced inflammation by suppressing JAK-STAT and p38 MAPK signalings and ROS production, Inflamm. Res., 63(7), 597 (2014).   DOI
25 X. L. Piao, M. H. Jang, J. Cui, and X. Piao, Lignans from the fruits of Forsythia suspensa, Bioorg. Med. Chem. Lett., 18(6), 1980 (2008).   DOI
26 X. Fang, Y. Wang, J. Wang, J. Zhang, and X. Wang, Microwave-assisted extraction followed by RP-HPLC for the simultaneous extraction and determination of forsythiaside A, rutin, and phillyrin in the fruits of Forsythia suspensa, J. Sep. Sci., 36(16), 2672 (2013).   DOI
27 G. Pearson, F. Robinson, T. Beers Gibson, B. E. Xu, M. Karandikar, K. Berman, and M. H. Cobb, Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions, Endocr. Rev., 22(2), 153 (2001).   DOI
28 M. J. Robinson and M. H. Cobb, Mitogen-activated protein kinase pathways, Curr. Opin. Cell Biol., 9(2), 180 (1997).   DOI