DOI QR코드

DOI QR Code

Forsythiae Fructus Induces VEGF Production via p38 MAPK Activation in Human Keratinocytes

각질형성세포에서 p38 MAPK 활성을 통한 연교의 VEGF 생성 효과

  • 김미선 ((주)LG생활건강 기술연구원) ;
  • 최윤호 ((주)LG생활건강 기술연구원) ;
  • 박선규 ((주)LG생활건강 기술연구원) ;
  • 이천구 ((주)LG생활건강 기술연구원) ;
  • 이상화 ((주)LG생활건강 기술연구원)
  • Received : 2016.09.08
  • Accepted : 2016.12.02
  • Published : 2016.12.30

Abstract

Cutaneous microvasculature plays a critical role in age-associated skin changes. A considerable reduction of number and size of vessels has been observed in the upper dermis of elderly skin. Forsythiae fructus (FF), the dried fruit of plant Forsythia suspensa (F. suspensa), has been traditionally used as an herbal medicine to treat inflammatory diseases and bacterial diseases. However, its regulatory effect on angiogenic responses has not been elucidated in skin. Therefore, we analyzed secretory profiles upon treatment of FF extract using array designed to detect angiogenesis-associated mediators in human keratinocytes. Because keratinocyte-derived VEGF (vascular endothelial growth factor) has been regarded as a potent factor for new microvasculature under the epidermis, we further investigated the effect of FF extract on VEGF production. We observed that the VEGF expression of mRNA and protein level was increased by about 2 folds in a dose-dependent manner after FF extract treatment. In signaling experiments, FF extract induced rapid p38 MAPK activation within 5 min, and the activation was totally abrogated by pretreatment with a p38 MAPK specific inhibitor. The FF-induced VEGF upregulation was also significantly attenuated by a p38 MAPK inhibition. Taken together, FF extract induces VEGF production via p38 MAPK activation in human epidermal keratinocytes. These novel findings suggest that FF is useful as a potential agent with pro-angiogenic activity and may help to improve age-dependent reduction of the microvasculature in aged skin or to heal skin wound.

진피 상층부 모세혈관은 젊은 사람에 비해 노인에서 그 수와 크기가 감소되어 있어 피부에서 모세혈관이 차지하는 비율이 나이에 따라 급격히 낮아진다. 연교는 물푸레나무과에 속하는 개나리 열매를 건조한 것으로 주로 염증성 또는 항균성 질환에 오랫동안 사용되어져온 약재로서 지금까지 피부 혈관신생과 관련된 효능은 보고되지 않았다. 따라서 본 연구에서는 연교 추출물이 혈관신생과 관련된 인자들에 미치는 영향을 피부 각질형성 세포주를 이용하여 조사하고자 하였다. 우리는 먼저 연교 추출물이 혈관신생과 관련된 인자들의 발현에 어떤 영향을 주는지 알아보고자 각질형성세포에 연교 추출물을 처리하고 혈관신생과 관련된 55개 단백질의 발현을 분석하였다. 발현 변화를 보인 인자들 중 혈관내피세포 성장인자(VEGF, vascular endothelial growth factor)는 강력한 혈관신생 촉진인자로서 연교 추출물에 의해 유의하게 발현이 증가되었다. 따라서 연교 추출물이 VEGF 생성에 미치는 영향에 대해 자세히 알아보고자 연교 추출물을 농도별로 세포에 처리하고 단백질 발현과 mRNA 발현 변화를 조사한 결과, 연교 추출물은 VEGF의 유전자 수준뿐만 아니라 단백질 수준의 발현을 2배이상 농도 의존적으로 증가시켰다. 다음으로 연교 추출물에 의한 VEGF 발현 증가에 관여하는 신호전달 기전을 밝히고자 MAPK 활성을 살펴본 결과, 연교 추출물을 세포에 처리하면 5 min 내 p38 MAPK의 활성이 관찰되었으며, 특이적 억제제 전처리를 통해 p38 MAPK 활성을 억제하면 연교 추출물을 처리하더라도 VEGF의 유전자 및 단백질 발현이 완전히 억제됨을 확인하였다. 이러한 결과로부터 연교는 피부 각질형성세포에 작용하여 p38 MAPK 활성을 통해 VEGF 생성을 유도함을 알 수 있었고, 피부에서 노화에 따른 표피아래 모세혈관 손상을 개선하는데 도움을 줄 수 있는 후보 물질로서 연교의 새로운 효능을 제안한다.

Keywords

References

  1. J. M. Waller and H. I. Maibach, Age and skin structure and function, a quantitative approach (I): blood flow, pH, thickness, and ultrasound echogenicity, Skin Res. Technol., 11(4), 221 (2005). https://doi.org/10.1111/j.0909-725X.2005.00151.x
  2. I. Bentov and M. J. Reed, The effect of aging on the cutaneous microvasculature, Microvasc. Res., 100, 25 (2015). https://doi.org/10.1016/j.mvr.2015.04.004
  3. A. G. Gunin, V. V. Petrov, N. N. Golubtzova, O. V. Vasilieva, and N. K. Kornilova, Age-related changes in angiogenesis in human dermis, Exp. Gerontol., 55, 143 (2014). https://doi.org/10.1016/j.exger.2014.04.010
  4. J. H. Chung, J. Y. Seo, H. R. Choi, M. K. Lee, C. S. Youn, G. Rhie, K. H. Cho, K. H. Kim, K. C. Park, and H. C. Eun, Modulation of skin collagen metabolism in aged and photoaged human skin in vivo, J. Invest. Dermatol., 117(5), 1218 (2001). https://doi.org/10.1046/j.0022-202x.2001.01544.x
  5. J. H. Chung, K. Yano, M. K. Lee, C. S. Youn, J. Y. Seo, K. H. Kim, K. H. Cho, H. C. Eun, and M. Detmar, Differential effects of photoaging vs intrinsic aging on the vascularization of human skin, Arch. Dermatol., 138(11), 1437 (2002).
  6. D. Vybohova, Y. Mellova, K. Adamicova, M. Adamkov, and G. Heskova, Quantitative changes of the capillary bed in aging human skin, Histol. Histopathol., 27(7), 961 (2012).
  7. K. Kajiya, Y. K. Kim, Y. Kinemura, J. Kishimoto, and J. H. Chung, Structural alterations of the cutaneous vasculature in aged and in photoaged human skin in vivo, J. Dermatol. Sci., 61(3), 206 (2011). https://doi.org/10.1016/j.jdermsci.2010.12.005
  8. Y. Tsuchida, The effect of aging and arteriosclerosis on human skin blood flow, J. Dermatol. Sci., 5(3), 175 (1993). https://doi.org/10.1016/0923-1811(93)90764-G
  9. S. Vandekeere, M. Dewerchin, and P. Carmeliet, Angiogenesis revisited: an overlooked role of endothelial cell metabolism in vessel sprouting, Microcirculation, 22(7), 509 (2015). https://doi.org/10.1111/micc.12229
  10. T. D. Crafts, A. R. Jensen, E. C. Blocher-Smith, and T. A. Markel, Vascular endothelial growth factor: therapeutic possibilities and challenges for the treatment of ischemia, Cytokine, 71(2), 385 (2015). https://doi.org/10.1016/j.cyto.2014.08.005
  11. S. Barrientos, O. Stojadinovic, M. S. Golinko, H. Brem, and M. Tomic-Canic, Growth factors and cytokines in wound healing, Wound Repair Regen., 16(5), 585 (2008). https://doi.org/10.1111/j.1524-475X.2008.00410.x
  12. R. S. Ishak, S. A. Aad, A. Kyei, and F. S. Farhat, Cutaneous manifestations of anti-angiogenic therapy in oncology: review with focus on VEGF inhibitors, Crit. Rev. Oncol. Hematol., 90(2), 152 (2014). https://doi.org/10.1016/j.critrevonc.2013.11.007
  13. K. E. Johnson and T. A. Wilgus, Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair, Adv. Wound Care, 3(10), 647 (2014). https://doi.org/10.1089/wound.2013.0517
  14. M. Sawane and K. Kajiya, Ultraviolet light-induced changes of lymphatic and blood vasculature in skin and their molecular mechanisms, Exp. Dermatol., 21(S1), 22 (2012). https://doi.org/10.1111/j.1600-0625.2012.01498.x
  15. J. H. Chung and H. C. Eun, Angiogenesis in skin aging and photoaging, J. Dermatol., 34(9), 593 (2007). https://doi.org/10.1111/j.1346-8138.2007.00341.x
  16. Y. P. Guo, L. G. Lin, and Y. T. Wang, Chemistry and pharmacology of the herb pair Flos Lonicerae japonicae-Forsythiae fructus, Chin. Med., 10, 16 (2015). https://doi.org/10.1186/s13020-015-0044-y
  17. H. S. Kang, J. Y. Lee, and C. J. Kim, Anti-inflammatory activity of arctigenin from Forsythiae fructus, J. Ethnopharmacol., 116(2), 305 (2008). https://doi.org/10.1016/j.jep.2007.11.030
  18. J. H. Lee, J. Y. Lee, T. D. Kim, and C. J. Kim, Antiasthmatic action of dibenzylbutyrolactone lignans from fruits of Forsythia viridissima on asthmatic responses to ovalbumin challenge in conscious guinea-pigs, Phytother. Res., 25(3), 387 (2011). https://doi.org/10.1002/ptr.3273
  19. P. C. Kuo, G. F. Chen, M. L. Yang, Y. H. Lin, and C. C. Peng, Chemical constituents from the fruits of Forsythia suspensa and their antimicrobial activity, BioMed Res. Int., 2014, 304830 (2014).
  20. Y. Zhang, Y. Deng, T. Luther, M. Muller, R. Ziegler, R. Waldherr, D. M. Stern, and P. P. Nawroth, Tissue factor controls the balance of angiogenic and antiangiogenic properties of tumor cells in mice, J. Clin. Invest., 94(3), 1320 (1994). https://doi.org/10.1172/JCI117451
  21. K. Yano, K. Kadoya, K. Kajiya, Y. K. Hong, and M. Detmar, Ultraviolet B irradiation of human skin induces an angiogenic switch that is mediated by upregulation of vascular endothelial growth factor and by downregulation of thrombospondin-1, Brit. J. Dermatol., 152(1), 115 (2005). https://doi.org/10.1111/j.1365-2133.2005.06368.x
  22. M. S. Kim, Y. K. Kim, H. C. Eun, K. H. Cho, and J. H. Chung, All-trans retinoic acid antagonizes UV-induced VEGF production and angiogenesis via the inhibition of ERK activation in human skin keratinocytes, J. Invest. Dermatol., 126(12), 2697 (2006). https://doi.org/10.1038/sj.jid.5700463
  23. M. S. Kim, Y. J. Oh, S. Lee, J. E. Kim, K. H. Kin, and J. H. Chung, Ultraviolet radiation attenuates thrombospondin 1 expression via PI3K-Akt activation in human keratinocytes, Photochem. Photobiol., 82(3), 645 (2006). https://doi.org/10.1562/2005-09-29-RA-702
  24. G. Pearson, F. Robinson, T. Beers Gibson, B. E. Xu, M. Karandikar, K. Berman, and M. H. Cobb, Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions, Endocr. Rev., 22(2), 153 (2001). https://doi.org/10.1210/er.22.2.153
  25. M. J. Robinson and M. H. Cobb, Mitogen-activated protein kinase pathways, Curr. Opin. Cell Biol., 9(2), 180 (1997). https://doi.org/10.1016/S0955-0674(97)80061-0
  26. X. Fang, Y. Wang, J. Wang, J. Zhang, and X. Wang, Microwave-assisted extraction followed by RP-HPLC for the simultaneous extraction and determination of forsythiaside A, rutin, and phillyrin in the fruits of Forsythia suspensa, J. Sep. Sci., 36(16), 2672 (2013). https://doi.org/10.1002/jssc.201300317
  27. X. Pan, X. Cao, N. Li, Y. Xu, Q. Wu, J. Bai, Z. Yin, L. Luo, and L. Lan, Forsythin inhibits lipopolysaccharide- induced inflammation by suppressing JAK-STAT and p38 MAPK signalings and ROS production, Inflamm. Res., 63(7), 597 (2014). https://doi.org/10.1007/s00011-014-0731-7
  28. X. L. Piao, M. H. Jang, J. Cui, and X. Piao, Lignans from the fruits of Forsythia suspensa, Bioorg. Med. Chem. Lett., 18(6), 1980 (2008). https://doi.org/10.1016/j.bmcl.2008.01.115