• Title/Summary/Keyword: Plant Equipment

Search Result 929, Processing Time 0.027 seconds

Development on Cleaning System of Condenser for Nuclear Power Plant by Using Sponge Ball (스펀지 볼을 이용한 원전용 복수기 튜브 세정 시스템 개발)

  • Yi, Chung-Seob;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.21-26
    • /
    • 2015
  • This study presents a development of the cleaning system in a nuclear power plant condenser. The tube cleaning system is very important equipment in a power plant condenser. Specially, removal of the fouling is a key process in the condenser tube. The objective of this study is development of a ball collector system for cleaning a condenser by using a sponge ball. This study uses CFD in order to optimize design of the ball strainer screen. Through the CFD, the implication of the ball strainer screen for static pressure distribution is examined. Results of research, this study have developed a 1/5 scale model for application to the power plant and developed a performance test equipment.

Impact test of a centrifugal pump used in nuclear power plant under aircraft crash scenario

  • Huang, Tao;Chen, Mengmeng;Li, Zhongcheng;Dong, Zhanfa;Zhang, Tiejian;Zhou, Zhiguang
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1858-1868
    • /
    • 2021
  • Resisting an accidental impact of large commercial aircrafts is an important aspect of advanced nuclear power plant (NPP) design. Especially after the 9·11 event, some regulations were enacted, which required the design of NPPs should consider the accidental impact of large commercial aircrafts. Normal working of equipment is important for stopping reactor under an impact when an NPP is in operation. However, there is a lack of reliable analysis and research on the impact test of nuclear prototype equipment. Therefore, in order to study the response of the equipment under high acceleration impact, a centrifugal pump is selected as the research object to perform the impact test. A horizontal half-sinusoidal pulse wave was applied to the working pump. The test results show that the horizontal response of the motor and flange is greater compared to other parts, as well as the vertical response of the coupling. The stress response of the pump body support and motor support is high, hence these parts should be considered in the design of the pump. Finally, combined with the damage and stress evaluation results of the pump under different amplitudes, the ultimate impact acceleration that the pump can withstand is given.

A Study of Icon Design for Navigation Equipment (항해장비 아이콘 디자인에 관한 연구)

  • Jang, Jun Hyuk;Yang, Younghoon;Bae, Yonggi;Chae, Byeong-Geun
    • Journal of the Korean Institute of Plant Engineering
    • /
    • v.23 no.4
    • /
    • pp.77-83
    • /
    • 2018
  • Nowadays, as IT industry is being developed, many studies are in progress in the areas of user interface (UI) and user experience (UX) and interest in the icons related to these areas are rising accordingly. IT developments have also influenced the vessel sector promoting the development of navigation equipment and systems utilizing IT. However, due to complicated functions of navigation equipment and systems, concerns have been noted about the increased cognitive burden on officers, along with the need for researches on reducing such burden. This study, therefore, was conducted focusing on the design of icons that will reduce cognitive burden on officers when using a typical navigation equipment such as ECDIS(Electric Chart Display and Information System). Based on a survey conducted with experts who have rich experiences in navigation and are currently teaching ECDIS in universities, the present study identified the functions of ECDIS, for which icons should be designed. Accordingly, suitable icons for ECDIS were designed and their effects were evaluated. It is expected that the results of this study will be used as basic data for the design of icons for other navigation equipment in the future.

Procedure and Method of Equipment Qualification for Solenoid-Operated Valves Used in Nuclear Power Plants (원전용 솔레노이드 밸브의 기기검증 절차 및 방법)

  • Lim, Byung-Ju;Park, Chang-Dae;Chung, Kyung-Yul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.683-691
    • /
    • 2011
  • In order to develop technology for an equipment qualification (EQ) test, which is an important process in localizing solenoid-operated valves used in nuclear power plants, we analyzed related regulations, test procedures, conditions, equipment, and acceptance criteria. EQ regulations for the solenoid-operated valve are classified as law, guide, and standard, and are subdivided according to test specimens and contents. The EQ test is composed of functional, normal-, and accident- condition tests. The solenoid-operated valve is aged under normal and accident conditions, which are predicted in the design conditions of a nuclear power plant, and the performance of the valve is measured by a functional test. The test method and procedure analyzed in this paper might be very useful for manufacturers as well as EQ testers.

An Analysis of Operating Experience Reports Published in the Domestic Nuclear Power Plants for Resent 5 Years (최근 5년간 국내원전 운전경험보고서 분석)

  • Lee, Sang-Hoon;Kim, Je-Hun;Hur, Nam-Young
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.9 no.1
    • /
    • pp.35-39
    • /
    • 2013
  • The Operating Experience Report(OER) has written about the event and accident happened at a Nuclear Power Plant(NPP). The purpose of publishing the OER is to prevent the similar event or accident repeatedly by spreading the experience of a single plant to other plants personnel. Before initiating the analysis mentioned in this paper, 2,298 review reports for the same number of OER published from 2007 to June 2012 have been written to achieve the correct and objective statistics. The analysis introduced in this paper is performed with the various factors such as year, plant type, equipment, type of work, root-cause. The root-cause analysis is showed that the equipment problem is the major factor in domestic NPPs, but on the other hand human-error is the main part of the foreign NPPs. Moreover, while the number of the man-made event is decreasing, the equipment-made event is rapidly increasing in domestic NPPs.

Design of the Procurement Engineering Support System : A Case Study (구매엔지니어링 관리지원시스템 상세 설계 사례 연구)

  • Kim, Jinil;Yeom, Choongsub;Shin, Joonguk;Salim, Shelly
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.33-40
    • /
    • 2018
  • This paper is based on the interim result of ongoing research and development project to develop a software system which support procurement activities, namely PeMSS (Procurement Engineering Management Support System). PeMSS is a system that enables development requirements for each equipment and help designing equipment meeting the purchase requirements. Procurement at EPC (Engineering Procurement and Construction) and operational stage of a plant is an important area that determines the integrity and profitability of the plant. Procurement of unsuitable equipment due to selection of suppliers that do not meet or omit critical requirements in purchase specification can result in enormous cost increase due to such as delay in EPC project, unsatisfactory performance and reduced plant operation time. In spite of the importance of the procurement engineering, there is a lack of support system for systematic preparation of purchase specification, so development of the procurement specification is basically relying on the experience of the engineers in charge. Accordingly, it is needed to develop the PeMSS to help procurement engineers develop procurement specification based on systems engineering approach. This paper introduces the design of the PeMSS.

Development of a System for Visualization of the Plant 3D Design Data Based on ISO 15926 (ISO 15926 기반 플랜트 3D 설계 데이터 가시화를 위한 시스템 개발)

  • Jeon, Youngjun;Kim, Byung Chul;Mun, Duhwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.2
    • /
    • pp.145-158
    • /
    • 2015
  • ISO 15926 is an international standard for the sharing and integration of plant lifecycle information. Plant design data consist of logical configuration, equipment specifications, 2D piping and instrument diagrams (P&IDs), and 3D plant models (shape data). Although 3D computer-aided design (CAD) data is very important data across the plant lifecycle, few studies on the exchange of 3D CAD data using ISO 15926 have been conducted so far. For this, we analyze information requirements regarding plant 3D design in the process industry. Based on the analysis, ISO 15926 templates are defined for the representation of constructive solid geometry (CSG) - based 3D design data. Since system environments for 3D CAD modeling and Semantic Web technologies are different from each other, we present system architecture for processing and visualizing plant 3D design data in the Web Ontology Language (OWL) format. Through the visualization test of ISO 15926-based 3D design data for equipment with a prototype system, feasibility of the proposed method is verified.

Seismic Response Analysis of Nuclear Power Plant Structures and Equipment due to the Pohang Earthquake (포항지진에 대한 원자력발전소 구조물 및 기기의 지진응답분석)

  • Eem, Seung-Hyun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.113-119
    • /
    • 2018
  • The probabilistic seismic safety assessment is one of the methodology to evaluate the seismic safety of the nuclear power plants. The site characteristics of the nuclear power plant should be reflected when evaluating the seismic safety of the nuclear power plant. The Korea seismic characteristics are strong in high frequency region and may be different from NRC Regulatory Guide 1.60, which is the design spectrum of nuclear power plants. In this study, seismic response of a nuclear power plant structure by Pohang earthquake (2017.11.15. (KST)) is investigated. The Pohang earthquake measured at the Cheongsong seismic observation station (CHS) is scaled to the peak ground acceleration (PGA) of 0.2 g and the seismic acceleration time history curve corresponding to the design spectrum is created. A nuclear power plant of the containment building and the auxiliary buildings are modeled using OPENSEES to analyze the seismic response of the Pohang earthquake. The seismic behavior of the nuclear power plant due to the Pohang earthquake is investigated. And the seismic performances of the equipment of a nuclear power plant are evaluated by the HCLPF. As a result, the seismic safety evaluation of nuclear power plants should be evaluated based on site-specific characteristics of nuclear power plants.

Analysis of Electric Shock Accident on 4.16 kV Class Circuit breaker for Power Plant (발전소용 4.16 kV급 차단기에서 감전사고 사례 분석)

  • Park, Nam-Kyu;Song, Jae-Yong;Kim, Jin-Pyo;Goh, Jae-Mo
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.54-60
    • /
    • 2014
  • This paper describes electric shock accidents on a 4.16 kV class circuit breaker for power plant. Electric shock accidents mostly involve damage of human life, in comparison with electrical fire, rate of human death tend to be higher in electric shock accidents. Specially, in a high voltage facilities rate of human death comprised about 43.7% by electric shock accidents. If electric shock accidents happen in a 4.16 kV class circuit breaker for power plant, then the power plant discontinue power production. Electric shock accidents in a power plant have a great ripple effect such as an electric power shortage. In this paper, we analyzed electric shock accidents on a 4.16 kV class circuit breaker for power plant. From the analysis results, we confirmed a cause of electric shock accidents on a 4.16 kV class circuit breaker, it happened by defect of interlock equipment or occurrence of breakdown between first feeder contactor and shielding plate. In order to reduce electric shock accidents on a 4.16 kV class circuit breaker, the power plant should consider improvement of interlock equipment and insulation of feeder contactor in circuit breaker.