• Title/Summary/Keyword: Plankton carbon biomass

Search Result 11, Processing Time 0.025 seconds

Contribution of Phytoplankton and Zooplankton to Total Organic Carbon (TOC) in the Reservoir-river-Seonakdong River, Busan (서낙동강에서 동·식물플랑크톤의 총유기탄소 기여율 변동 분석)

  • Lee, You-Jung
    • Journal of Environmental Science International
    • /
    • v.29 no.7
    • /
    • pp.691-702
    • /
    • 2020
  • Carbon biomass of plankton community, Total Organic Carbon (TOC) and Chlorophyll a (chl.a) concentration were examined in the SeoNakdong river from January to December in 2014, to assess composition of phyto- and zoo-plankton variation, to certify the correlation between chl.a and TOC and to determine the level of contribution of plankton carbon content to TOC in the reservoir-river ecosystem. The correlation level between TOC and chl.a was low in the year 2014 but exceptionally was highly correlated only during the period with cyanobacterial bloom. The high level of contribution of plankton carbon content to TOC was attributed to cyanobacterial carbon biomass from May to November and to Cladocera carbon biomass from March to May, November and December despite of its low abundance. These results suggest that there were inter-relationships between phytoplankton, zooplankton and TOC and also subtle consistency of their properties through the year. These patterns should be discussed in relation to the physiochemical and biological characteristics of the environment, as well as to allochthonous organic matters from non-point pollution sources.

Biomass of Primary Producer in the Ch$\check{o}$nsu Bay -Relationships between Phytoplankton Carbon, Cell Number and chlorophyll- (천수만 일차생산자의 생물량 -식물플랑크톤 탄소량과 세포개체수 및 클로로필과의 관계-)

  • Shim, Jae Hyung;Shin, Yoon Keun
    • 한국해양학회지
    • /
    • v.24 no.4
    • /
    • pp.194-205
    • /
    • 1989
  • In order to study the biomass of primary producer, phytoplankton is collected monthly September 1985 to August 1986 in Ch$\check{o}$nsu Bay. Phytoplankton carbon contents which are calculated from phytoplankton volume were ranged from $26.7{\mu}gC/l$ to $960.7{\mu}gC/l$, and average carbon contents of each month lie in the range of $58.6-684.7{\mu}gC/l$(annual mean $208.5{\mu}gC/l$). For net plankton analysis with the carbon contents, cell numbers, and chlorophyll concentrations show a close correlation, while for nanoplankton the correlation was low, indicating that nano-fraction includes a significant portion of picoplankton. Also, the multiple regression analysis with carbon content, cell number, and chlorophyll concentration to size fraction well illustrate the prime importance of the net-fraction in phytoplankton group. C/Chl-a ratios ranged from 9.1 to 100.5, average rations of net- and nanoplankton are 111 and 6.4, respectively. The greater net plankton faction is, the higher C/Chl-a ratio is, however in case of high nanoplankton portion C/Chl-a ratio show low level. These results indicate that the difference of C/Chl-a ratio per phytoplankton cell size be main factor for the variation of C/Chl-a ratio in Ch$\check{o}$nsu Bay. As C/Chl-a ratio fluctuates greatly in coastal ecosystem, that use of a direct conversion of convert chlorophyll to organic carbon may lead erronous estimation.

  • PDF

Grazing Relationship between Phytoplankton and Zooplankton in Lake Paldang Ecosystem (팔당호 생태계에서 동물플랑크톤과 식물플랑크톤의 섭식관계)

  • Uhm, Seong-Hwa;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.3 s.117
    • /
    • pp.390-401
    • /
    • 2006
  • This study was conducted to understand the phytoplankton-zooplankton trophic linkage in Lake Paldang ecosystems (Paldang Dam and Kyungan Stream) from April to December 2005. Zooplankton were filtered as two size groups (microzooplankton (MICZ): 60{\sim}20\;{\mu}m$, macrozooplankton (MACZ): >$200\;{\mu}m$), and their clearance rates and C-fluxes on phytoplankton were measured. Grazing experiments were performed in the laboratory with the different zooplankton densities (0, 2, 4, 8x of ambient density, n=2). Diatoms, such as Aulacoseira and Cyclotella were dominant phytoplankton taxa at both sites. Among phytoplankton communities, total carbon biomass of phyflagellates was much higher than others at both sites. Rotifers numerically dominated zooplankton community, while cladocerans dominated carbon biomass. Both phytoplankton and zooplankton density and biomass were high in spring, but decreased markedly after summer monsoon season. plankton biomass at Kyungan Stream was significantly higher than that of Paldang Dam. Zooplankton clearance rate and amount of C-flux were relatively high in the spring and then decreased after summer at both sites. Seasonal change of C-flux was similar to that of zooplankton biomass (P<0.001, n=7). MACZ clearance rate and C-flux were higher than those of MICZ. Water residence time and physical disturbance in summer appeared to affect zooplankton grazing on phytoplankton at the study sites. Our results indicate phytoplankton were an important energy source for zooplankton in Lake Paldang ecosystem. Furthermore, C-flux of plankton food web is affected by not only biological components but also physical parameters.

Spatial and Temporal Distribution of Picoplankton, Nanoplankton and Microplankton in Jungmun Coastal Waters of Jeju Island, Korea (제주 중문연안역의 초미세, 미소, 소형플랑크톤 시 ${\cdot}$ 공간적 분포)

  • Shynn, Bumm;Lee, Joon-Baek
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.2
    • /
    • pp.78-86
    • /
    • 2002
  • Abundance, carbon biomass and chlorophyll a concentration of each size-fractionated plankton on the basis of trophical level were investigated in terms of spacial and temporal distribution, and interactions between each biological parameter and environmental factors in Jungmun coastal waters of Jeju Island from July 1999 to June 2000. Heterotrophic picoplankton (HPP) abundance averaged 1.4${\times}$$10^{6}$ cells ${\cdot}$ $ml^{-1}$ at of offshore and 8.3${\times}$$10^{5}$ cells ${\cdot}$ $ml^{-1}$ at inshore, while autotrophic picoplankton (APP) abundance 9.9${\times}$$10^{4}$ cells ${\cdot}$ $ml^{-1}$ at of offshore and 7.1${\times}$$10^{4}$ cells ${\cdot}$ $ml^{-1}$ at inshore. They were more abundant at of offshore than at inshore, and also more abundant than the other areas of Korean waters. On the other hand, heterotrophic and autotrophic nanoplankton (HNP, ANP) were more abundant at inshore than at of offshore. Microplankton (AMP) abundance was affected by diatom (r=0.962, P${\le}$0.001) at inshore and by dinoflagellate (r=0.868, P${\le}$0.001) at of offshore. However correlations between each plankton group in terms of size and trophic level were not significant. Carbon biomass showed as same as the distribution pattern of abundance, but composition percentage of each biomass of plankton group were quite different from that of abundance, representing the highest percentage in ANP. Seasonal fluctuation of chlorophyll a were different according to size class, showing the highest with 0.42 ${\mu}g$CHl-${\alpha}$${\cdot}$$1^{-1}$(57.9%) of APP in March 2000, 1.42 ${\mu}g$CHl-${\alpha}$${\cdot}$$1^{-1}$(74.7%) of ANP in May 2000, and 1.51 ${\mu}g$CHl-${\alpha}$${\cdot}$$1^{-1}$(81.8%) of AMP in July 1999. Correlation between biological parameters and environmental factors by principle component analysis revealed that the first factor as main explanation is the increasing of phosphorus and silica and the increasing of the at both of offshore and inshore. The N:P ratio were 36.4 at inshore and 32.6 at of offshore, showing the lack of phosphorus. Thus we suggest that phosphorus might be a main limiting factor to affect phytoplankton community in the study area.

The Importance of Intertidal Benthic Autotrophs to the Kwangyang Bay (Korea) Food Webs: ${\delta}^{13}$C analysis

  • Kim, Jong-Bin;Kim, Jeong-Bae;Lee, Pil-Yong;Hong, Jae-Sang;Kang, Chang-Keun
    • Journal of the korean society of oceanography
    • /
    • v.36 no.4
    • /
    • pp.109-123
    • /
    • 2001
  • The importance of phytoplankton, benthic vegetation, vascular marsh plants (primarly Phragmites communis and Salix gracilstyla) and riverine particulates inputs to the coastal bay food web was studied in Kwangyang Bay, Korea using stable carbon isotope ratios. Vascular marsh plants (${\delta}^{13}$C=-27.4${\pm}$0.8%o) and riverine particulates (-26.0${\pm}$0.8%o) were isotopically distinct from phytoplankton (-20.7${\pm}$0.8%o), microphytobenthos (-14.2${\pm}$0.6%o) and seagrass (8.8%o). The ${\delta}^{13}$C values of consumers in the study site ranged from -20.2 to -11.3olo suggesting the assimilation of carbon derived from both phytoplankton and benthic vegetation (including algae and seagrass), The relative importance of both pelagic and benthic origins of food sources was likely to vary depending on feeding habit of the consumers. The isotopic difference between pelagic and benthic consumers indicated that plankton-derived carbon was used mostly by pelagic consumers, but the carbon derived from intertidal benthic vegetation was incorporated into food webs through benthic consumers. The ${\delta}^{13}$C values of consumers in the present study differed noticeably from published values of the phytoplankton-based ecosystem, particularly in the $^{13}$C enrichment of benthic grazers, deposit-feeders and demersal feeders of fishes. This tendency of the $^{13}$C enrichment was also found in suspension-feeding bivalves. Taking the biomasses of benthic vegetation into consideration, benthic microalgae was likely to account for the consumer $^{13}$C enrichment. Role of terrestrially derived riverine carbon was limited to the riverine system and was not evident within the bay systems. Phragmites, despite their important biomass, appeared to be of little importance as consumer diet.

  • PDF

Community Structure of Plankton in Eutrophic Water Systems with Different Residence Time (체류시간이 서로 다른 부영양 수계에서 플랑크톤군집의 생태학적 특성)

  • Lee, Uk-Se;Han, Myeong-Su
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.3 s.108
    • /
    • pp.263-271
    • /
    • 2004
  • To collect the basic ecological information about the microbial food webs in eutrophic water system with different residence time, the monthly variation of bacterioplankon (bacteria and small-sized cyanobacteria) and nanoplankton (phytoplankton and protists) were examined from December 2000 to September 2001. Kyungan stream is shorter in resident time (ca.5.4 d) than Seokchon reservoir (ca.72 d), even though they showed the same pattern in precipitation. With the basic environments, we examined the biomass (standing crops and its carbon content) of each plankton collected from the surface water. Large-sized planktons flourished in the time of low temperature, while small planktons were in the time of the high temperature period. Especially, in the Kyungan stream with much disturbance by rainfall and outflow, high diversity showed in term of species and cell morphology, compared to that of Seokchon lake. The time-lag relationship remarkably showed between phytoplankton and bacteria in Seokchon reservoir, and between protists and bacteria in Kyungan stream, respectively.

Carbon Dynamics of Plankton Communities in Paldang Reservoir (팔당호 플랑크톤 군집의 탄소생물량 동태)

  • Noh, Seong-You;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.174-187
    • /
    • 2008
  • In an effort to identify structure and function of microbial loop in Paldang reservoir, we monitored environmental and biological factors at Kyungan stream (station K), Paldang dam (station P) and the confluence of North and South Han River (station M) from March to December, 2005. DOC concentration was higher in March to May and November than the others. Nutrient concentration in station K detected relatively higher than that of two stations. Both of phosphate and silicate gradually increased at all stations until September, after then decreased. The highest Chl-$\alpha$ concentration was observed at all stations in April, and November. The carbon biomass of bacteria and HNF were relatively higher in March, May and August than the others, whereas that of the ciliate showed no significant difference in monthly fluctuation. Nevertheless, the significant relationships revealed between ciliate (P<0.001) and HNF (P<0.05) and bacterial density. Tintinnopsis cratera, Didinium sp., Vorticella sp., Paramecium sp. and Strombidium sp. were dominant species in ciliate community. The dominant species of phytoplankton were Stephanodiscus hantzschii and Cyclotella meneghiniana at almost stations in Spring, Summer and Autumn. However, Aulacoseira granulata accounted for >95% of phytoplankton biomass at station P and M in Autumn. The carbon biomass of zooplankton was highest at station P and M in June, and relatively higher biomass observed at all stations in August, October and November. Diaphanosoma brachyurum and Bosmina longirostris were dominant in stations P and M of June and in all stations of October and November, respectively. The maximum growth (A. granulata: $0.17\;d^{-1}$, S. hantzschii: $0.14\;d^{-1}$) and grazing rate (A. granulata: 1.93 preys $d^{-1}$, S. hantzschii: 1.63 preys $d^{-1}$) of Bosmina longirostris revealed in algal preys as Aulacoseira granulata and Stephanodiscus hantzschii. In conclusion, these results suggest that bacteria and phytoplankton can play the most crucial source as prey within microbial food chain in Spring and Summer and grazing food chain in Autumn, respectively.

Temporal and Spatial Distribution of Biomass and Cell Size of Bacteria and Protozoa in Lake Paldang and Kyungan Stream (팔당호와 경안천에서 박테리아와 원생생물의 생물량과 세포크기의 시 ${\cdot}$ 공간적 분포)

  • Son, Ju-Youn;Kong, Dong-Soo;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.3 s.117
    • /
    • pp.378-389
    • /
    • 2006
  • Seasonal changes of biomass and cell size of bacteria and protozoa, and factors affecting their distribution in Lake Paldang and Kyungan Stream were analyzed from April to December, 2005. Bacterial abundance at Paldang Dam and Kyungan Stream was similar, but it did not much increase during hot summer period. Protozoan carbon biomass was much greater at Kyungan Stream compared to Paldang Dam. HNAN generally accounted for the majority of total protozoan biomass, but ciliates made up the highest proportion in April and November at Paldang Dam and June at both sites. PNAN showed low biomass at both sites, but it was high during spring and fall season. Small-sized HNAN ($3{\sim}7\;{\mu}m$) numerically predominated the protozoan community at both sites. Average cell size of HNAN was bigger at Kyungan Stream where nutrients concentration was much higher than Paldang Dam. Average cell size of ciliates varied seasonally; it was relatively small during the summer. HNAN biomass significantly correlated with Chl-a concentration and ciliates biomass at Paldang Dam, indicating that HNAN increase might link to the ciliates increase. At Kyungan Stream, HNAN biomass showed a significant relationship with PNAN biomass, and Chl-a concentration was closely related with both of HNAN and PNAN biomass. Ciliate biomass showed significant relationship with nutrient (TN, TP) and particulate matter (SS) only at Kyungan Stream. At both sites, protozoan biomass was significantly correlated with bacterial biomass, and ciliates were additionally related flagellates. High biomass of microbial components and the close relationships among them suggest that the energy transfer through the microbial loop may important in the plankton food web of Lake Paldang ecosystem.

Ecosysteme de I′Etang de Berre (Mediterranee nord-occidentale) : Caracteres Generales Physiques, Chimiques et Biologiques

  • Kim, Ki-Tai
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.2
    • /
    • pp.247-258
    • /
    • 2004
  • Climatological, hydrological and planktonical research studies, measurements of primary production and photosynthetic efficiency from December 1976 to December 1978 have been carried out in two brackish lakes: Lake Etang de Berre and Lake Etang de Vaine located in the French Mediterranean coast, in the region of Carry-le-Rouet located on the north-west Mediterranean near Marseilles, and in fresh water inflows from 4 Rivers (Touloubre, Durance, Arc, Durancole) to Lake Etang de Berre. Physico-chemical parameters were measured for this study: water temperature, salinity, density, pH, alcalinity, dissolved oxygen (% saturation), phosphate, nitrate, nitrite, silicate etc. Diverse biological parameters were also studied: photosynthetic pigments, phaeopigments, specific composition and biomass of phytoplankton, primary pelagic production etc. Climatical factors were studied: air-temperature, solar-radiation, evaporation, direction (including strength) of winds, precipitation and freshwater volume of the four rivers. The changes in Lake ‘Etang de Berre’ ecosystem depend on the quality of the water in the Durance River, and on the effects of seawater near the entrance of the Caronte Canal. The water quality of the lake varies horizontally and vertically as a result of atmospheric phenomena, maritime currents and tides. The distribution of water temperatures is generally heterogeneous. Southeasterly winds and the Northeasterly Mistral wind are important in the origins of circulated and mixed water masses. These winds are both frequent and strong. They have, as a result, a great effect on the water environment of Lake Etang de Berre. In theory, the annual precipitation in this region is well over eight times the water mass of the lake. The water of the Durance River flows into Lake Etang de Berre through the EDF Canal, amounting to 90% of the precipitation. However, reduction of rainfall in dry seasons has a serious effect on the hydrological characteristics of the lake. The temperature in the winter is partially caused by the low temperature of fresh water, particularly that of the Durance River. The hydrological season of fresh and brackish water is about one month ahead of the hydrological season of sea water in its vicinity. The salinity of Lake Etang de Berre runs approximately 3$\textperthousand$, except at lower levels and near the entrance to the Caronte Canal. However, when the volume of the Durance River water is reduced in the summer and fall, the salinity rises to 15$\textperthousand$. In the lake, the ratio of fresh water to sea water is six to one (6:1). The large quantities of seston conveyed by rivers, particularly the Durance diversion, strongly reduce the transparency in the brackish waters. Although the amount of sunshine is also notable, transparency is slight because of the large amount of seston, carried chiefly by Tripton in the fresh water of the Durance River. Therefore, photosynthesis generally occurs only in the surface layer. The transparency progressively increases from freshwater to open seawater, as mineral particles sink to the bottom (about 1.7kg $m^{-2}a^{-1}$ on the average in brackish lakes). The concentration of dissolved oxygen and the rate of oxygen saturation in seawater (Carry-le-Rouet) ranged from 5.0 to 6.0 $m\ell$ㆍ.$1^{-1}$, and from 95 to 105%, respectively. The amount of dissolved oxygen in Etang de Berre oscillated between 2.9 and 268.3%. The monographs of phosphate, nitrate, nitrite and silicate were published as a part of a study on the ecology of phytoplankton in these environments. Horizontal and vertical distributions of these nutriments were studied in detail. The recent diversion of the Durance River into Lake Etang de Berre has effected a fundamental change in this formerly marine environment, which has had a great impact in its plankton populations. A total of 182 taxa were identified, including 111 Bacillariophyceae, 44 Chlorophyceae, and 15 Cyanophyceae. The most abundant species are small freshwater algae, mainly Chlorophyceae. The average density is about $10^{8}$ cells $1^{-1}$ in Lake Etang de Berre, and about double that amount in Lake Etang de Vaine. Differences in phytoplankton abundance and composition at the various stations or at various depths are slight. Cell biovolume V (equivalent to true biomass), plasma volume VP (‘useful’ biomass) and, simultaneously. the cell surface area S and S/V ratio through the measurement of cell dimensions were computed as the parameters of phytoplankton productivity and metabolism. Pigment concentrations are generally very high on account of phytoplankton blooms by Cyanophyceae, Chlorophyceae and Cryptophyceae. On the other hand, in freshwaters and marine waters, pigment concentrations are comparatively low and stable, showing slight annual variation. The variations of ATP concentration were closely related to those of chlorophyll a and phytoplankton blooms only in marine waters. The carbon uptake rates ranged between 38 and 1091 mg$Cm^{-2}d^{-1}$, with an average surface value of 256 mg; water-column carbon-uptake rates ranged between 240 and 2310 mg$Cm^{-2}d^{-1}$, with an average of 810, representing 290 mg$Cm^{-2}$, per year 45 000 tons per year of photosynthetized carbon for the whole lake. Gross photosynthetic production measured by the method of Ryther was studied over a 2-year period. The values obtained from marine water(Carry-le-Rouet) ranged from 23 to 2 337 mg$Cm^{-2}d^{-1}$, with a weighted average of 319, representing about 110 gCm$^{-2}$ per year. The values in brakish water (Etang de Berre) ranged from 14 to 1778 mg$Cm^{-2}d^{-1}$, with a weighted average of 682, representing 250 mg$Cm^{-2}$ per year and 38 400 tons per year of photosynthesized carbon for the whole lake.

Effect of Filter-feeding Bivalve (Corbiculidae) on Phyto- and Zooplankton Community (여과 섭식성 패류가 동 ${\cdot}$ 식물플랑크톤 군집에 미치는 영향)

  • Kim, Ho-Sub;Kong, Dong-Soo;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.3 s.108
    • /
    • pp.319-331
    • /
    • 2004
  • This study was conducted to evaluate the ecological impact of freshwater bivalve (Corbiculidae) on plankton communities in experimental enclosure systems (2 m ${\times}$ 2 m ${\times}$ 2 m). During the acclamation period of one month, cyanobacteria, including Microcystis viridis and Microcystis aeruginosa, dominated in both control and treatment enclosures with no noticeable density difference. After the addition of 100 mussels, dominant species of phytoplankton shifted from Microcystis to Scenedesmus in concert with slight decrease in the cell density and the increase of N/P ratio. However, cell density in the control quickly increased, accompanied with changes of dominant species to Oscillatoria spp. With the introduction of additional 500 musseles in the treatment enclosure, dominant phytoplankton species in both enclosures were replaced with Selenastrum spp. and Cryptomonas sp. In the initial stage, the total zooplankton abundance in the control was higher than that of treatment, but it was reversed after the addition 100 mussels. After mussel density increased up to 600 indivisuals, zooplankton density in the treatment decreased with dominance of small taxa, such as rotifers and nauplius. However, abundance and carbon biomass of large zooplankton, such as Bosmina longirostris and Diacyclops thomasi were maintained in a high level compared with those of control. During the study period, Chl. a concentration in mussel treatment and control increased with DIP and $NH_3-N$, respectively. Due to the increase of $NH_3-N$, especially after the introduction of additional 500 mussels, nitrogen limitation did not occur in the treatment enclosure in contrast with strong nutrient limitation occurred in the control. These results indicate that filter-feeding Corbicula could exert important impact on nutrient recycling and plankton community structure in a freshwater ecosystem, through direct feeding and competition for the same food resource as zooplankton on one hand, and through alteration of nutrient availability on the other.