Browse > Article

Temporal and Spatial Distribution of Biomass and Cell Size of Bacteria and Protozoa in Lake Paldang and Kyungan Stream  

Son, Ju-Youn (Department of Environmental Science, Konkuk University)
Kong, Dong-Soo (Han River Environment Research Laboratory, National Institute of Environmental Research)
Hwang, Soon-Jin (Department of Environmental Science, Konkuk University)
Publication Information
Abstract
Seasonal changes of biomass and cell size of bacteria and protozoa, and factors affecting their distribution in Lake Paldang and Kyungan Stream were analyzed from April to December, 2005. Bacterial abundance at Paldang Dam and Kyungan Stream was similar, but it did not much increase during hot summer period. Protozoan carbon biomass was much greater at Kyungan Stream compared to Paldang Dam. HNAN generally accounted for the majority of total protozoan biomass, but ciliates made up the highest proportion in April and November at Paldang Dam and June at both sites. PNAN showed low biomass at both sites, but it was high during spring and fall season. Small-sized HNAN ($3{\sim}7\;{\mu}m$) numerically predominated the protozoan community at both sites. Average cell size of HNAN was bigger at Kyungan Stream where nutrients concentration was much higher than Paldang Dam. Average cell size of ciliates varied seasonally; it was relatively small during the summer. HNAN biomass significantly correlated with Chl-a concentration and ciliates biomass at Paldang Dam, indicating that HNAN increase might link to the ciliates increase. At Kyungan Stream, HNAN biomass showed a significant relationship with PNAN biomass, and Chl-a concentration was closely related with both of HNAN and PNAN biomass. Ciliate biomass showed significant relationship with nutrient (TN, TP) and particulate matter (SS) only at Kyungan Stream. At both sites, protozoan biomass was significantly correlated with bacterial biomass, and ciliates were additionally related flagellates. High biomass of microbial components and the close relationships among them suggest that the energy transfer through the microbial loop may important in the plankton food web of Lake Paldang ecosystem.
Keywords
bacteria; cell size; Kyungan Stream; Paldang Dam; microbial loop; protozoa;
Citations & Related Records
연도 인용수 순위
  • Reference
1 박혜경, 정원화. 2003. 팔당호의 장기간 식물플랑크톤 발생 추이. 한국물환경학회지 19(6): 673-684
2 Andersen, P. and T. Fenchel. 1985. Bacteriovory by microheterotrophic flagellates in seawater samples. Limnol. Oceanogr. 30: 198-202   DOI   ScienceOn
3 Azam, F., T. Fenchel, J.G. Field, L.A. Meyer_riel and F. Thingstad. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ecol. 10: 257-263   DOI
4 Callieri, C., S.M. Karjalainen and S. Passoni. 2002. Grazing by ciliates and heterotrophic nanoflagellates on picocyanobacteria in Lago Maggiore, Italy. J. Plankton Res. 24(8): 785-796   DOI   ScienceOn
5 Fenchel, T. 1982. Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Mar. Ecol. Prog. Ser. 9: 35-42   DOI
6 Hwang, S.J. and R.T. Heath. 1997. Bacterial productivity and protistan bacterivory in costal and offshore communities of Lake Erie. Can. J. Fish. Aquat. Sci. 54: 788-799   DOI
7 Kuuppo, P. 1994. Annual in the abundance and size of heterotrophic nanoflagellates on the SW coast of Finland, the Baltic Sea. J. Plankton Res. 16(11): 1525- 1542   DOI   ScienceOn
8 Laybourn-Parry, J.L., M. Walton, J. Young, R.I. Jones and A. Shine. 1994. Proto-zooplankton in a large oligotrophic lake-Loch Ness, Scotland. J. Plankton Res. 16: 1655- 1670   DOI   ScienceOn
9 McManus, G.B. and J.A. Fuhrmann. 1988. Control of marine bacterioplankton populations: measurement and significance of grazing. Hydrobiol. 159: 51-62   DOI   ScienceOn
10 Poter, K.G. and Y.S. Feig. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943-948   DOI   ScienceOn
11 Rheinheimer, G. 1985. Aquatic microbiology. 3rd ed., p. 69- 93. John Wiley and Sons. Chichester
12 Sheldon, R.W., P. Nival and F. Rassouleadegan. 1986. An experimental investigation of a flagellate-ciliatecopepod food chain with some observation relevant to the linear biomass hypothesis. Limol. Oceacogr. 31: 184-188   DOI   ScienceOn
13 Sieburth, J. McN., V. Smetacek and J. Lenz. 1978. Pelagic ecosystem structure: heterotrophic components of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 23: 1256-1263   DOI   ScienceOn
14 김용재. 1998. 팔당댐호의 식물플랑크톤 군집의 생태적 특성. 육수지 31(3): 225-234
15 Laybourn-Parry, J., J. Olver, A. Rogerson and P.L. Duverge. 1990. The temporal and spatial patterns of protozooplankton abundance in a eutrophic temperate lake. Hydrobiol. 203: 99-110   DOI
16 국립환경연구원. 2003. 팔당호의 조류발생 메카니즘 규명연구 (II). NIER No. 2003-87-700
17 Ducklow, H. 1983. Production and fate of bacteria in the oceans. Bioscience 33: 494-501   DOI   ScienceOn
18 Pace, M.L. 1982. Planktonic ciliates: their distribution, abundance and relationship to microbial resources in a monomictic lake. Can. J. Fish Aquat. Sci. 39: 1106-1116   DOI
19 Sherr, B.F., E.B. Sherr and T. Berman. 1983. Grazing growth and ammonium excretion rates of a heterotrophic microflagellate fed with four species of bacteria. Appl. Environ. Microbiol. 45: 1196-1201
20 Wetzel, R.G. 1983. Limnology. Saunders College Publishing. pp. 487-518
21 문은영, 김영옥, 김백호, 공동수, 한명수. 2004. 팔당호 섬모충 플랑크톤의 분류 및 생태학적 연구. 육수지 37(2): 149- 179
22 Sanders, R.W., D.A. Caron and U.G. Berninger. 1992. Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters; an interecosystem comparison. Mar. Ecol. Prog. Ser. 86: 1-14   DOI
23 Christaki, U., A. Giannakourou, F. Van Wambeke and G. Gregori. 2001. Nanoflagellate predation on auto- and heterotrophic picoplankton in the oligotrophic Mediterranean Sea. J. Plankton Res. 23: 1297-1310   DOI   ScienceOn
24 Maker, A.F.H., E.A. Nusch, I. Rai and B. Riemann. 1980. The measurement of photosynthetic pigments in freshwaters and standardization of methods: Conclusions and recommendations. Arch. Hydrobiol. Beih. 14: 91- 106
25 Nagata, T. 1988. The microflagellate-picoplankton food linkage in the water column of Lake Biwa. Limnol. Oceanogr. 33: 504-517   DOI   ScienceOn
26 Sherr, B.F. and Sherr, E.B. 1991. Proportional distribution of total numbers, biovolume and bacterivory among size classes of 2-20 ${\mu}$m nonpigmented marine flagellates. Mar. Microb. Food Webs 5: 227-237
27 Simek, K., P. Hartman, J. Nedoma, J. Pernthaler, D. Springmann, J. Vrba and R. Psenner. 1997a. Community structure, picoplankton grazing and zooplankton control of heterotrophic nanoflagellates in a eutrophic reservoir during the summer phytoplankton maximum. Aquat. Microb. Ecol. 12: 49-63   DOI   ScienceOn
28 신재기, 박경미, 황순진, 조경제. 2001. 경안천과 팔당호에서 총 세균수의 분포 및 동태. 육수지 34(2): 119-125
29 Nakano, S.I., N. Manage, P.M. and Kawabata, Z. 1998. Trophic roles of heterotrophic nanoflagellates and ciliates among planktonic organisms in a hypereutrophic pond. Aquat. Microb. Ecol. 16: 153-161   DOI   ScienceOn
30 박혜경, 정원화, 서정미, 김상훈, 이인선. 2002. 수질관리 (3) : 팔당호의 조류발생 특성. 2002년도 공동춘계 학술발표회 논문집 p. 173-178
31 Berk, S.G., D.C. Brownlee, D.R. Heinle, H.J. Kling and R.R. Colwell. 1977. Ciliates as a food source for marine planktonic copepods. Microb. Ecol. 4: 27-40   DOI   ScienceOn
32 Beaver, J.R. and T.L. Crisman. 1982. The trophic response of ciliated protozoans in freshwater lakes. Limnol. Oceanogr. 27: 246-253   DOI   ScienceOn
33 Porter, K.G., M.C. Pace and J.F. Battey. 1979. Ciliate protozoans as lines in freshwater planktonic food chains. J. Protozool. 27: 114-125
34 Simon, M. and F. Azam. 1989. Protein content and protein sunthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51: 201-213   DOI
35 신재기, 조주래, 황순진, 조경제. 2000. 경안천-팔당호의 부영 양화와 수질오염 특성. 육수지 33(4): 387-394
36 환경부. 1996. 수질오염공정시험방법
37 Auer, B., U. Elzer and H. Arndt. 2004. Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: influence of resource and predation. J. Plankton Res. 26(6): 697-709   DOI   ScienceOn
38 공동수. 1992. 팔당호의 육수생태학적 연구. 고려대학교 박사 학위 논문
39 최승익, 변명섭, 안태석. 1997. 소양호에서 총세균수의 분포. 육수지 30: 377-383
40 Chrzanowski, T.H. and K. Simek. 1993. Bacterial growth and losses due to bacterivory in a mesotrophic lake. J. Plankton Res. 15: 771-785   DOI   ScienceOn
41 Lee, J.J. and J.A. Fuhrman. 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol. 53: 1298- 1303
42 김동섭, 김범철. 1990. 팔당호의 일차생산. 육수지 23(3): 177- 179
43 김백호, 최지영, 황순진, 한명수. 2004. 몇가지 영양염 결핍이 팔당댐의 식물플랑크톤군집에 미치는 영향. 육수지 37(1): 47-56
44 Borsheim, K.Y. and G. Bratbak. 1987. Cell volume to carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Mar. Ecol. Prog. Ser. 36: 171- 175   DOI
45 김종민, 박준대, 노혜란, 한명수. 2002. 소양호와 팔당호 수질의 수직 및 계절적 변화. 육수지 35(1): 10-20
46 Fukami K., B. Meier and J. Overbeck. 1991. Vertical and temporal changes in bacterial production and its consumption by heterotrophic nanoflagellates in a north German eutrophic lake. Arch Hydrobiol. 122: 129-145
47 Kennedy, R.H. and W.W. Walker. 1990. Reservoir nutrient dynamics. In: Thornton, K.W., B.L. Kimmel and F.E. Payne, (eds.) Reservoir limnology: ecological perspectives. John Wiley & Sons, Inc. New York, NY. pp. 109- 131
48 Marker, A.F.H. 1972. The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophytin. Freshwat. Biol. 2: 361-385   DOI
49 Wetzel, R.G. and G.E. Likens. 2000. Limnological Analysis. 3rd ed. p. 429. Springer. New York
50 Andersen, P. and H.M. Sorensen. 1986. Population dynamics and trophic coupling in pelagic microorganisms in eutrophic coastal waters. Mar. Ecol. Prog. Ser. 33: 99- 109   DOI
51 Rassoulzadegan, F., M. Laval-Peuto and R.W. Sheldon. 1988. Partioning of the food ratio of marine ciliates between picoplankton and nanoplankton. Hydrobiol. 159: 75-88   DOI   ScienceOn
52 Riemann, B. and M. Sondergaard. 1986. Carbon dynamics in eutrophic temperate lakes (eds), Elsevier Science Publishers B.V., Netherland
53 Wylie, J.L. and D.J. Currie. 1991. The relative importance of bacteria and algae as food sources for crustacean zooplankton. Limnol. Oceanogr. 36: 708-728   DOI   ScienceOn
54 Zhao, Y., Y. Yuhe, F. Weisong and S. Yunfen. 2003. Growth and production of free-living heterotrophic nanoflagellates in a eutrophic lake-Lake Donghu, Wuhan, China. Hydrobiol. 498: 85-95   DOI   ScienceOn
55 Gasol, J.M. and D. Vaque. 1993. Lack of coupling between heterotrophic nanoflagellates and bacteria: a general phenomenon across aquatic systems. Limnol. Oceanogr. 38: 657-665   DOI   ScienceOn
56 Simek, K., J. Vrba, J. Pernthaler, T. Posch, P. Hartman, J. Nedoma and R. Psenner. 1997b. Morphological and compositional shifts in an experimental bacterial community influenced by protists with contrasting feeding modes. Appl. Envir. Microbiol. 63: 587-595
57 Tobiesen, A. 1991. The succession of microheterotrophs and phytoplankton within the microbial loop in Oslofjorden, May-October 1984. J. Plankton Res. 13: 197-216   DOI
58 Sherr, E.B. and B.F. Sherr. 1994. Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microb. Ecol. 28: 223-235   DOI   ScienceOn
59 Strathmann, R.R. 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12: 411-418   DOI   ScienceOn
60 Caron, D.A. 1983. Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescent microscopy, and comparison with other procedures. Appl. Environ. Microbiol. 46: 491-498
61 Sorokin, Y.I. 1977. The heterotrophic phase of plankton succession on the Japan Sea. Mar. Biol. 41: 107-117   DOI
62 Weisse. T. 1990. Trophic interactions among heterotrophic microplankton, nanoplankton and bacteria in Lake Constance. Hydrobiol. 191: 111-122   DOI
63 Nakano, S.I. and Zen' ichiro Kawabata. 2000. Changes in cell volume of bacteria and heterotrophic nanoflagellates in a hypereutrophic pond. Hydrobiol. 428: 197- 203   DOI   ScienceOn
64 Weisse, T. 1991. The annual cycle of heterotrophic freshwater nanoflagellates: Role of bottom-up versus topdown control. J. Plankton Res. 13: 167-185   DOI
65 APHA-AWWA-WEF. 1995. Standard methods for the examination of water and wastewater. 19th ed., APHAAWWA- WEF. Washington D.C. USA
66 Chrost, R.J. 1990. Microbial extoenzymes in aquatic environments. p. 47-78. In: R.J. chrost (ed.). Aquatic Microbial Ecology. Springer Verlag, New York
67 Muller, H., A. Schone, R.M. Pinto-Coelho, A. Schweizer and T. Weisse. 1991. Seasonal succession of ciliates in Lake Constance. Microb. Ecol. 21: 119-138   DOI   ScienceOn
68 Tadonleke, R.D., D. Planas and M. Lucotte. 2005. Microbial Food Webs in Boreal Humic Lakes and Reservoirs: Ciliates as a major Factor Related to the Dynamics of the Most Active Bacteria. Microbial Ecology 49: 325- 341   DOI   ScienceOn
69 Putland, J.N. 2000. Microzooplankton herbivory and bacterivory in Newfoundland coastal waters during spring, summer and winter. 2000. J. Plankton Res. 22(2): 253-277   DOI   ScienceOn
70 Biyu, S. 2000. A comparative study on planktonic ciliates in two shallow mesotrophic lakes (China): species composition, distribution and quantitative importance. Hydrobiol. 427: 143-153
71 Laws, E.A., D.G. Redalje, L.W. Haas, P.K. Beinfang and R.W. Eppley. 1984. High phytoplankton growth and production rates in oligotrophic Hawaiian coastal waters. Limnol. Oceanogr. 29: 1161-1169   DOI   ScienceOn
72 Carrick, H.J. and Fahnenstiel, G.I. 1989. Biomass, size structure and composition of phototrophic and heterotrophic nanoflagellate communities in Lakes Huron and Michigan. Can J. Fish. Aquat. Sci. 46: 1922-1928   DOI