Browse > Article

Carbon Dynamics of Plankton Communities in Paldang Reservoir  

Noh, Seong-You (Department of Molecular and Environmental Bioscience, Hanyang University)
Han, Myung-Soo (Department of Life Science, Hanyang University)
Publication Information
Abstract
In an effort to identify structure and function of microbial loop in Paldang reservoir, we monitored environmental and biological factors at Kyungan stream (station K), Paldang dam (station P) and the confluence of North and South Han River (station M) from March to December, 2005. DOC concentration was higher in March to May and November than the others. Nutrient concentration in station K detected relatively higher than that of two stations. Both of phosphate and silicate gradually increased at all stations until September, after then decreased. The highest Chl-$\alpha$ concentration was observed at all stations in April, and November. The carbon biomass of bacteria and HNF were relatively higher in March, May and August than the others, whereas that of the ciliate showed no significant difference in monthly fluctuation. Nevertheless, the significant relationships revealed between ciliate (P<0.001) and HNF (P<0.05) and bacterial density. Tintinnopsis cratera, Didinium sp., Vorticella sp., Paramecium sp. and Strombidium sp. were dominant species in ciliate community. The dominant species of phytoplankton were Stephanodiscus hantzschii and Cyclotella meneghiniana at almost stations in Spring, Summer and Autumn. However, Aulacoseira granulata accounted for >95% of phytoplankton biomass at station P and M in Autumn. The carbon biomass of zooplankton was highest at station P and M in June, and relatively higher biomass observed at all stations in August, October and November. Diaphanosoma brachyurum and Bosmina longirostris were dominant in stations P and M of June and in all stations of October and November, respectively. The maximum growth (A. granulata: $0.17\;d^{-1}$, S. hantzschii: $0.14\;d^{-1}$) and grazing rate (A. granulata: 1.93 preys $d^{-1}$, S. hantzschii: 1.63 preys $d^{-1}$) of Bosmina longirostris revealed in algal preys as Aulacoseira granulata and Stephanodiscus hantzschii. In conclusion, these results suggest that bacteria and phytoplankton can play the most crucial source as prey within microbial food chain in Spring and Summer and grazing food chain in Autumn, respectively.
Keywords
Paldang reservoir; environmental factor; plankton communities; microbial loop;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 김동원, 이원재. 1993. 해양미생물과 식물플랑크톤의 상호관계 1. 수영만의 해양세균과 식물플랑크톤 우점종 간의 상호관 계. 한국수산학회지 26: 446-457
2 김상훈, 박혜경, 변명섭, 전명진, 정동일. 2003. 팔당호 동물플랑 크톤 시∙공간적 분포. 한국물환경학회.대한상하수도학 회 공동춘계학술발표 논문집, p. 289-292
3 김영옥, 최현우, 장민철, 장풍국, 이원제, 신경순, 장 만. 2007. 부유생물을 이용한 해양생태계 건강성 평가. 한국해양연구 원 발간학술지 29: 327-337
4 신재기. 1998. 낙동강 부영양에 따른 담수조류의 생태학적 연 구. 인제대학교 대학원 박사학위논문, 202 p.
5 이욱세, 한명수. 2004. 체류시간이 서로 다른 부영양 수계에서 플랑크톤군집의 생태학적 특성. 한국육수학회지 37: 263- 271
6 한명수, 홍성수, 어윤열. 2002. 팔당호의 생태학적 연구 4. 경안 천 하류의 영양염 및 입자태 유기물 거동과 식물플랑크톤 의 천이. 한국육수학회지 35: 1-9
7 Auer, B., U. Elzer and H. Arndt. 2004. Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: influence of resource and predation. J. Plankton Res. 26: 697-709   DOI   ScienceOn
8 Baines, S.B. and M.L. Pace. 1991. The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater system. Limnol. Oceanogr. 36: 1078-1090   DOI   ScienceOn
9 Beaver, J.R. and T.L. Crisman. 1982. The trophic response of ciliated of protozoans in freshwater lakes. Limnol. Oceanogr. 27: 246-253   DOI   ScienceOn
10 Dawidowicz, P. 1990. Effectiveness of phytoplankton control by large-bodied and small-bodued zoopalnkton. Hydrobiologia. 200/201: 43-47   DOI
11 Hwang, S.J. and R.T. Heath. 1997. The distribution of protozoa across a trophic gradient, factors controlling their abundance and importance in the plankton food web. J. Plankton Res. 19: 491-518   DOI   ScienceOn
12 Kim, H.W., K.H. Chang, K.S. Jeong and G.J. Joo. 2003. The spring metazooplankton dynamics in the river-reservoir hybrid system (Nakdong River, Korea): Its role in cintrolling the phytoplankton biomass. Kor. J. Limnol. 36: 420-426   과학기술학회마을
13 Lees, J.J. and J.A. Fuhrman. 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol. 53: 1298- 1303
14 Takeo, H. and N. Handa. 1983. The seasonal variation of organic constiuents in a eutrophic lake, Lake Suwa, Japan. Part II. Dissolved organic matter. Arch. Hydrobiologia. 98: 443-462
15 Wetzel, R.G. 1983. Limnology. Saunders College Publishing, p. 487-518
16 Wetzel, R.G. and G.E. Likens. 1991. Limnological analyses. Springer-Verlag, New York
17 Wylie, J.L. and D.J. Currie. 1991. The relative importance of bacteria and algae as food sources for crustacean zooplankton. Limnol. Oceanogr. 36: 708-728   DOI   ScienceOn
18 엄성화, 황순진. 2006. 팔당호 생태계에서 동물플랑크톤과 식 물플랑크톤의 섭식관계. 한국육수학회지 39: 390-401   과학기술학회마을
19 Berninger, U.G., B.J. Finlay and P. Kuuppo-Leinikki. 1991. Protozoan control of bacterial abundances in freshwater. Limnol. Oceanogr. 34: 139-147
20 Weisse, T. 1991. The annual cycle of heterotrophic freshwater nanoflagellates: Role of bottom-up versus topdown control. J. Plankton Res. 13: 167-185   DOI
21 Dumont, H.J., L.V.D. Velde and S. Dumont. 1975. The dry weight estimate of biomass in a selecrion of cladocera, copepoda, and rotifera from the plankton, periphyton, and benthos of contimental waters. Oceclogia. 91: 75- 97
22 Hama, T. and N. Handa. 1980. Molecular weight distribution and characterization of dissolved organic matter from lake waters. Arch. Hydrobiologia. 90: 106-120
23 Pace, M.L. and J.D. Orcutt, Jr. 1981. The relative importance of protozoans, rotifers and crustaceans in a freshwater zooplankton community. Limnol. Oceanogr. 26: 822-830   DOI   ScienceOn
24 유광일, 임병진. 1990. 한강 하류역의 식물플랑크톤 군집과 수 질오염지표에 대하여. 한국육수학회지 23: 267-277
25 Kim, B.H., W.S. Lee, Y.O. Kim, H.O. Lee and M.S. Han. 2005. Relationship between akinete germination and vegetative population of Anabaena flos-aquae (Nostocales, Cyanobacteria) in Seokchon reservoir (Seoul, Korea). Arch. Hydrobiologia. 163: 49-64   DOI   ScienceOn
26 Pirjo, K., A. Riitta, H. Seija, K. Harri, K. Jorma and P. Riitta. 1994. Trophic interactions and carbon flow between picoplankton and protozoa in pelagic enclosures manipulated with nutrients and a top predator. Mar. Ecol. Prog. Ser. 107: 89-102   DOI
27 Azam, F., T. Fenchel, J.G. Field, J.S. Gray, L.A. Meyer-Reil and F. Thingstad. 1983. The ecological role of water column microbes in the sea. Mar. Ecol. Prog. Ser. 126: 97-102   DOI
28 Choi, D.H., J.S. Park, C.Y. Hwang, S.H. Huh and B.C. Cho. 2002. Effects of thermal effluents from a power station on bacteria and heterotrophic nanoflagellates in coastal waters. Mar. Ecol. Prog. Ser. 229: 1-10   DOI
29 Ventelä, A.M., K. Wiackowski, M. Moilanen, V. Saarikari, K. Vuorio and J. Sarvala. 2002. The effect of small zooplankton on the microbial loop and edible algae during a cyanobacterial bloom. Freshwater Biol. 47: 1807- 1819   DOI   ScienceOn
30 Bloem, J. and G.M.B. Bar. 1989. Bacterial activity and protozoan grazing potential in a statified lake. Limnol. Oceanogr. 34: 291-309
31 Pace, M.L. 1982. Planktonic ciliates: their distribution, abundance, and relationship to microbial resources in a monomictic lake. Can. J. Fish. Aquat. Sci. 39: 1106- 1116   DOI
32 박혜경, 정원화. 2003. 팔당호의 장기간 식물플랑크톤 발생 추 이. 한국물환경학회지 19: 673-684
33 문은영, 김영옥, 김백호, 공동수, 한명수. 2004. 팔당호 섬모충 플랑크톤의 분류 및 생태학적 연구. 한국육수학회지 37: 149-179
34 Cho, B.C., S.C. Na and D.H. Choi. 2000. Active ingestion of fluorescently labeled bacteria by mesopelagic heterotrophic nanoflagellates in the East sea, Korea. Mar. Ecol. Prog. Ser. 206: 23-32   DOI
35 Sherr, E. and B. Sherr. 1988. Role of microbes in pelagic food webs: a revised concept. Limnol. Oceanogr. 33: 1225-1227   DOI   ScienceOn
36 손주연, 황순진, 공동수. 2006. 팔당호와 경안천에서 박테리아 와 원생동물의 생물량과 세포크기의 시.공간적 분포. 한국육수학회지 39: 378-389   과학기술학회마을
37 정승원, 이진환, 허회권. 2004. 한강 하류의 환경학적 연구 IV. 부영양 요인의 통계학적 해석. 한국육수학회지 37: 78-86
38 Cole, J.J., G.E. Likens and D.L. Strayer. 1982. Photosynthetically produced dissolved organic carbon: an important carbon source for planktonic bacteria. Limnol. Oceanogr. 27: 1080-1090   DOI   ScienceOn
39 Ochiai, M. and T. Hanya. 1980. Vertical distribution of monosaccharides in lake water. Hydrobiologia. 70: 165- 169   DOI
40 Porter, K.G. and Y.S. Feig. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943-948   DOI   ScienceOn
41 Thurman, E.M. 1985. Organic geochemistry of natural waters. Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht, The Netherlands
42 Simon, M. and F. Azam. 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51: 201-213   DOI
43 Skibbe, O. 1994. An improved quantitative protargol stain for ciliates and other planktonc protists. Arch. Hydrobiologia. 130: 339-347
44 Kim, B.H. and S.O. Hwang. 2004. The structure of the plankton community and the cyanobacterial bloom during the rainy season in mesoeutrophic lake (Lake Juam), Korea. K. J. Sanitation. 19: 51-59
45 양은진, 최중기, 유만호, 조병철, 최동한. 2005. 강화도 펄 갯벌 에서 저서성 원생동물 분포의 시간적 변이와 박테리아 및 미세 조류에 대한 포식압. 한국해양학회지 10: 19-30   과학기술학회마을
46 Caron, D.A., H.G. Dam, P. Kremer, E.J. Lessard, L.P. Madin, T.C. Malone, Q.J.M. Napp, E.R. Peele, M.R. Roman and M.J. Youngbluth. 1995. The contribution of microorganisms to particulate carbon and nitrogen in surface waters of the Sargasso Sea near Bermuda. Deep-Sea Res. 42: 943-972   DOI   ScienceOn
47 Carrick, H.J., G.L. Fahnenstiel and W.D. Taylor. 1992. Growth and production of plankton protozoa in Lake Michigan: in situ versus in vitro comparison and importance to food web dynamics. Limnol. Oceanogr. 37: 1221-1235   DOI   ScienceOn
48 Hong, S.S., S.W. Bang, Y.O. Kim and M.S. Han. 2002. Effents of rainfall on the hydrological conditions and phytoplankton community structure in the riverine zone of the Pal'tang Reservoir, Korea. J. Fresh. Ecol. 17: 507-520   DOI   ScienceOn
49 Nagata, T. 1988. The microflagellate-picoplankton food linkage in the water column of Lake Biwa. Limnol. Oceanogr. 33: 504-517   DOI   ScienceOn
50 Nemeth, A., J. Paolini and R. Herrera. 1982. Carbon transport in the Orinoco River: Prelimnary results, p. 357- 364. In: SCOPE/UNEP Transport of carbon and Minerals in Major World Rivers, 52 (Degens, E.T. ed.). University of Hamburg, Hamburg
51 한명수, 어윤열, 유재근, 유광일, 최영길. 1995. 팔당호의 생태학 적 연구 2. 식물플랑크톤의 군집 구조의 변화. 한국육수학 회지 28: 335-344
52 한명수, 이동석, 유근재, 박용철, 유광일. 1999. 팔당호의 생태학 적 연구 3. 식물플랑크톤의 일차생산력과 광합성 모델 parameters. 한국육수학회지 32: 8-15
53 Heinbokel, J.F. 1978. Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures. Mar. Biol. 47: 177-189   DOI
54 Laws, E.A., D.G. Redalje, L.W. Haas, P.K. Beinfang and R. W. Eppley. 1984. High phytoplankton growth and production rates in oligotrophic hawaiian ciastal waters. Limnol. Oceanogr. 29: 1161-1169   DOI   ScienceOn
55 Ha, K., M.H. Jang and G.J. Joo. 2003. Winter Stephanodiscus bloom development in the Nakdong River regulated by an estuary dam and tributaries. Hydrobiologia. 506-509: 221-227   DOI   ScienceOn
56 Montagnes, D.J.S. and D.H. Lynn. 1987. A quantitative Protorgol Stain (QPS) for ciliates: method description and test of its quantitative mature. Mar. Microb. Food Webs. 2: 83-93
57 Weisse, T., H. Müller, R.M. Pinto-Coelho, A. Schweizer, D. Springmann and G. Baldringer. 1990. Response of the microbial loop to the phytoplankton spring bloom in a large prealpine lake. Limnol. Oceanogr. 35: 781-794   DOI   ScienceOn
58 McManus, G.B. and J.A. Fuhrmann. 1988. Control of marine bacterioplankton population: measurement and significance of grazing. Hydrobiologia. 159: 51-62   DOI   ScienceOn
59 Sheldon, R.W., P. Nival and F. Rassoulzadegan. 1986. An experimental investigation of a flagellate-ciliate-copepod chain with some observation relevant to the linear biomass bypothesis. Limnol. Oceanogr. 31: 184-188   DOI   ScienceOn
60 Takehiko, F., J.C. Park, A. Imai and K. Matsushige. 1996. Dissolved organic carbon in a eutrophic lake; dynamics, biodegradability and origin. Aquatic Sciences. 58
61 APHA, AWWA, WPCF. 1995. Standard methods for the examination of water and wastewater, 19th ed. APHA, Washington D. C. 1100p.
62 Caron, D.A. 1983. Technique for enumeration of heterotrophic and photortophic nanoplankton, using epifluorescent microscopy, and comparison with other procedures. Appl. Environ. Microbial. 46: 491-498
63 Culver, D.A., M.M. Boucherle, D.J. Bean and J.W. Flethcer. 1985. Biomass of freshwater crustacean zooplankton from Length-Weight regressions. Can. J. Fish. Aquat. Sci. 42: 1380-1390   DOI
64 Frost, B.W. 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 17: 805-815   DOI   ScienceOn
65 Lampert, W. 1978. Release of dissolved organic carbon by grazing zooplankton. Limnol. Oceanogr. 23: 195-208   DOI   ScienceOn
66 Anderson, A. and D.O. Hessen. 1991. Carbon, nitrogen, and phosphorus contents of freshwater zooplankton. Limnol. Oceanogr. 36: 807-814   DOI   ScienceOn
67 Downing, J.A. and F.H.R. Rigler. 1984. A manual on methods for the assessment of secondary productivity in freshwaters. Blackwell Scientific Publications, p. 247- 249
68 정승원, 이진환, 유종수. 2003. 한강 하류의 환경학적 연구 V. 식물 플랑크톤 군집 대발생의 특징. Algae 18: 255-262   DOI
69 Beakes, Canter and Jaworski. 1988. A century of Mycology. Cambridge University Press, 166 p.
70 이진환, 장 만. 1997. 한강하류의 환경학적 연구 II. 식물플랑크톤의 동태. 한국육수학회지 30: 193-202
71 Soreide, J.E., H. Haakon, L.C. Michael, F.P. Stig and E.N. Hegseth. 2006. Seasonal food web structures and sympagic- pelagic coupling in the European Arctic revealed by stable isotopes and a two-source food web model. Progress in Oceanogr. 71: 59-87   DOI   ScienceOn
72 Hwang, S.J. 1995. Carbon dynamics of plankton communities in nearshore and offshore Lake Erie: The significance of the microbial loop for higher trophic levels. PhD dissertation, Kent State University, Kent, OH