• Title/Summary/Keyword: Plankton Community Structure

Search Result 22, Processing Time 0.024 seconds

Molecular Monitoring of Plankton Diversity in the Seonakdong River and Along the Coast of Namhae (분자 모니터링을 이용한 서낙동강과 남해 연안 플랑크톤 군집 분석)

  • Kim, Bo-Kyung;Lee, Sang-Rae;Lee, Jin-Ae;Chung, Ik-Kyo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.1
    • /
    • pp.25-35
    • /
    • 2010
  • The biodiversity of eukaryotic plankton has commonly been used to evaluate the status of aquatic ecosystems. Therefore, an accurate and rapid method for species identification is needed to reveal the biodiversity of environmental water samples. To date, molecular methods have provided a great deal of information that has enabled identification of the hidden biodiversity in environmental samples. In this study, we utilized environmental polymerase chain reaction (PCR) and constructed the 18S nuclear ribosomal RNA clone library from environmental water samples in order to develop more efficient methods for species identification. For the molecular analysis, water samples were collected from the Seonakdong River (Gimhae Bridge) and the coast of Namhae,(Namhaedo). Colony PCR and restriction fragment length polymorphism of PCR (PCR-RFLP) were then adopted to isolate unique clones from the 18S rDNA clone library. Restriction fragment length polymorphism pattern analysis of the Gimhae Bridge sample revealed 44 unique clones from a total of 60 randomly selected clones, while analysis of the Namhae sample revealed 27 unique clones from 150 clones selected at random. A BLAST search and subsequent phylogenetic analysis conducted using the sequences of these clones revealed hidden biodiversity containing a wide range of taxonomic groups (Heterokontophyta (7), Ciliophora (23), Dinophyta (1), Chytridiomycota (1), Rotifera (1) and Arthropoda (11) in the Gimhae Bridge samples Ciliophora (4), Dinophyta (3), Cryptophyta (1), Arthropoda (19) in the Namhae samples). Therefore, the molecular monitoring method developed here can provide additional information regarding the biodiversity and community structure of eukaryotic plankton in environmental samples and helps construct a useful database of biodiversity for aquatic ecosystems.

The structure of the plankton community and the cyanobacterial bloom during the rainy season in mesoeutrophic lake (Lake Juam), Korea

  • Kim, Baik-Ho;Hwang, Su-Ok
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.2
    • /
    • pp.51-59
    • /
    • 2004
  • 강우가 집중하고 남조류가 대발생하던 시기의 중영양호소인 주암호에서 박테리아, 식물플랑크톤, ANF, HNF, 섬모충플랑크톤, 동물플랑크톤과 환경요인들의 변화에 대해 조사하였다. 조사기간동안 우점종은 Cyclotella meneghinana, Aulacoseira granulata, Cryptomonas tetrapyrenoidsa로서 총현존량의 67% 이상을 차지하였다. 조사기간동안 남조류 대발생의 구성원은 현존량 및 종조성에서 크게 변화 하였다. 여름철 강우에 의한 엽록소 a, 수질 (COD, TP)의 변동이 심하였으며, 특히 C. tetrapyrenoidsa는 HNF, nauplii, rotifer, 섬모충의 변동에 매우 밀접한 관계를 보였다. 포식자인 rotifer는 박테리아, 피코플랑크톤이나 ANF같은 소형플랑크톤의 변동과 높은 관계를 보였다.

Assessing the Plankton Dynamics in Lakes and Reservoirs Ecosystem in the Southwestern Parts of Korea (국내 남서부지역 호수 및 저수지 생태계의 플랑크톤 동태 변화)

  • Kim, Hyun-Woo;La, Geung-Hwan;Jeong, Kwang-Seuk;Park, Jong-Hwan;Huh, Yu-Jung;Kim, Sang-Don;Na, Jeong-Eun;Jung, Myoung-Hwa;Lee, Hak-Young
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.2
    • /
    • pp.86-94
    • /
    • 2010
  • This study compares and contrasts the dynamics of plankton in 31 temperate lakes and reservoirs, and considers particularly the biomass ratio of zooplankton to phytoplankton and ecological model application. A total of 89 species of zooplankton were identified (70 rotifers, 14 cladocerans and 5 copepods) and a total of 554 species of phytoplankton were identified (176 Bacillariophyceae, 237 Chlorophyceae, 68 Cyanophyceae, and 73 other algal taxa). The total plankton abundance and species diversity were showed distinctive spatial and seasonal variation. Annual average phytoplankton density was $7,350{\pm}15,592$ cells $mL^{-1}$ (n=124), and the lowest was $855{\pm}448$ cells $mL^{-1}$ (n=4), while the highest was $72,048{\pm}13,4631$ cells $mL^{-1}$ (n=4). For zooplankton, small rotifer groups dominated the study sites, and approximately 3~10 species appeared in the study sites. Statistical analysis and an ecological model application revealed that the size of reservoirs affected the structure size of plankton community, i.e. relatively large number of species were found in smaller reservoirs. From this result, we can conclude that management strategy for the reservoir environment has to be focused more on small-size reservoirs, in terms of plankton community ecology.

Community Structure of Plankton in Eutrophic Water Systems with Different Residence Time (체류시간이 서로 다른 부영양 수계에서 플랑크톤군집의 생태학적 특성)

  • Lee, Uk-Se;Han, Myeong-Su
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.3 s.108
    • /
    • pp.263-271
    • /
    • 2004
  • To collect the basic ecological information about the microbial food webs in eutrophic water system with different residence time, the monthly variation of bacterioplankon (bacteria and small-sized cyanobacteria) and nanoplankton (phytoplankton and protists) were examined from December 2000 to September 2001. Kyungan stream is shorter in resident time (ca.5.4 d) than Seokchon reservoir (ca.72 d), even though they showed the same pattern in precipitation. With the basic environments, we examined the biomass (standing crops and its carbon content) of each plankton collected from the surface water. Large-sized planktons flourished in the time of low temperature, while small planktons were in the time of the high temperature period. Especially, in the Kyungan stream with much disturbance by rainfall and outflow, high diversity showed in term of species and cell morphology, compared to that of Seokchon lake. The time-lag relationship remarkably showed between phytoplankton and bacteria in Seokchon reservoir, and between protists and bacteria in Kyungan stream, respectively.

Variations in Plankton Assemblage in a Semi-Closed Chunsu Bay, Korea (반폐쇄적인 천수만 해역의 플랑크톤 군집 변화)

  • Lee, Jae-Kwang;Park, Chul;Lee, Doo-Byoul;Lee, Sang-Woo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.2
    • /
    • pp.95-111
    • /
    • 2012
  • Relationship between plankton assemblage and environmental factors in a semi-closed Chunsu Bay was examined. Temporal changes in phytoplankton assemblage was rather drastic than those found in most Korean coastal area in the Yellow Sea primarily due to the seawater temperature (T) and nutrient input from the dikes nearby. Freshwater discharge seemed to cause winter time increase of Diatoms (February) and summer time increase of Dinoflagellates at surface (July to August). Structural change in cell size with time was also found in Diatom. Zooplankton community structure was also changed with season probably due to the food concentration, seawater temperature and salinity (S). From principal component analysis (PCA) of zooplankton distribution, it was postulated that seasonal environmental changes such as T and S could explain about 32% of variability in zooplankton distribution along with phytoplankton cell numbers, while freshwater discharge could explain about 17%. Comparing with past data of 1985-1986, 1991-1992, the distributional patterns and percent composition of major species, Acartia hongi, Paracalanus parvus sensu lato and Centropages abdominalis, were similar. However, the abundances have been increased more than three times. The composition of other taxa than copepods showed significant changes.

Size Dependent Analysis of Phytoplankton Community Structure during Low Water Temperature Periods in the Coastal Waters of East Sea, Korea (저수온기 동해연안의 식물플랑크톤 크기에 따른 군집구조)

  • Lee, Juyun;Chang, Man
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.3
    • /
    • pp.168-175
    • /
    • 2014
  • In order to understand the phytoplankton community structure based on their cell size duringlow water temperature periods, we studied 10 stations in the East Sea, Korea on March, 2012. The minimum standing crops of total phytoplankton were $3.4{\times}10^6cells\;L^{-1}$ at the station 5. The maximum values were $7.6{\times}10^6cells\;L^{-1}$ at the station 8, which is two times the amount of the minimum. The carbon mass at the station 4 ($6.3{\times}10^8pg\;L^{-1}$) was more than forty times higher compared with station 5 ($0.08{\times}10^8pg\;L^{-1}$). From these results, we found a significant difference between standing crops and carbon mass which might have caused due to their differences in community structure and cell size. Therefore, we considered the types of plankton biomass to estimate the primary product in the specific location and/or time. The phytoplankton communities were classified in 3 types: microplankton (> $20{\mu}m$), nanoplankton (< $20{\mu}m$) and picoplankton (< $2{\mu}m$). In the case of picoplankton, various morphological types were observed during the study period. These various picoplankton species were further classified as S (spherical), SF (spherical&flagella), O (oval), OF (oval&flagella) or R (rod) type, and we analyzed their community structure based on these categories. The picoplankton was found to be the most dominant type at 8 stations and S type as the most popular. The picoplankton seems to be the significant organism in the marine ecology during low water temperature periods in the coastal waters of East Sea. Therefore, picoplankton \;-with scientific surveys can be considered as the database for their identification. In conclusion, we suggest that cell size of the phytoplankton would be the best criteria to accurately analyze their community structure and to reveal groups having more ecological influence.

Effect of Filter-feeding Bivalve (Corbiculidae) on Phyto- and Zooplankton Community (여과 섭식성 패류가 동 ${\cdot}$ 식물플랑크톤 군집에 미치는 영향)

  • Kim, Ho-Sub;Kong, Dong-Soo;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.3 s.108
    • /
    • pp.319-331
    • /
    • 2004
  • This study was conducted to evaluate the ecological impact of freshwater bivalve (Corbiculidae) on plankton communities in experimental enclosure systems (2 m ${\times}$ 2 m ${\times}$ 2 m). During the acclamation period of one month, cyanobacteria, including Microcystis viridis and Microcystis aeruginosa, dominated in both control and treatment enclosures with no noticeable density difference. After the addition of 100 mussels, dominant species of phytoplankton shifted from Microcystis to Scenedesmus in concert with slight decrease in the cell density and the increase of N/P ratio. However, cell density in the control quickly increased, accompanied with changes of dominant species to Oscillatoria spp. With the introduction of additional 500 musseles in the treatment enclosure, dominant phytoplankton species in both enclosures were replaced with Selenastrum spp. and Cryptomonas sp. In the initial stage, the total zooplankton abundance in the control was higher than that of treatment, but it was reversed after the addition 100 mussels. After mussel density increased up to 600 indivisuals, zooplankton density in the treatment decreased with dominance of small taxa, such as rotifers and nauplius. However, abundance and carbon biomass of large zooplankton, such as Bosmina longirostris and Diacyclops thomasi were maintained in a high level compared with those of control. During the study period, Chl. a concentration in mussel treatment and control increased with DIP and $NH_3-N$, respectively. Due to the increase of $NH_3-N$, especially after the introduction of additional 500 mussels, nitrogen limitation did not occur in the treatment enclosure in contrast with strong nutrient limitation occurred in the control. These results indicate that filter-feeding Corbicula could exert important impact on nutrient recycling and plankton community structure in a freshwater ecosystem, through direct feeding and competition for the same food resource as zooplankton on one hand, and through alteration of nutrient availability on the other.

Studies of the Plankton in the Southwestern Waters of the East (Sea of Japan)(III) (東海 西南海域의 플랑크톤(III) 동물플랑크톤 - 현존량, 종조성 및 분포)

  • 심재영;이동섭
    • 한국해양학회지
    • /
    • v.21 no.3
    • /
    • pp.146-155
    • /
    • 1986
  • Zooplankton samples of upper 50m layer in May, 1985 and of various depth intervals depending on thermal structure in October, 1985 were analyzed. Standing stock represents mean of 538inds/㎥ in spring and 267 inds/㎥ and 508inds/㎥ of whole column mean and surface layer in fall, respectively. A total of 55 and 104taxa is identified in each season and accumulated data list at least 123 species inhabiting in the study area. Copepods dominate in the zooplankton community, followed by protozoans and appendicularians in both seasons. In surface layer, distribution of subtropical species and standing stock seems to illuminate the effects of the Tsushima Current and the North Korean Cold Watermass in cold season, whereas only standing stock shows discernable variation in warm season. Concerning whole water column, depth of permanent thermocline bottom, at about 120m in fall 1985, plays significant role as a barrier to the distribution of mesopelagic cold water species. Serial sampling in October, 1985 does not reveal any perceivable diel vertical migration, which is considered to confirm the earlier suggest that owing to the lack of true abyssal species zooplankton biomass of deeper gayer is very poor, so that diel vertical migration of the East Sea is weak.

  • PDF

A Study on the Application of GOCI to Analyzing Phytoplankton Community Distribution in the East Sea (동해에서 식물플랑크톤 군집 분포 분석을 위한 GOCI 활용 연구)

  • Choi, Jong-kuk;Noh, Jae Hoon;Brewin, Robert J.W.;Sun, Xuerong;Lee, Charity M.
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1339-1348
    • /
    • 2020
  • Phytoplankton controls marine ecosystems in terms of nutrients, photosynthetic rate, carbon cycle, etc. and the degree of its influence on the marine environment depends on their physical size. Many studies have been attempted to identify marine phytoplankton size classes using the remote sensing techniques. One of successful approach was the three-component model which estimates the chlorophyll concentrations of three phytoplankton size classes (micro-phytoplankton; >20 ㎛, nano-; 2-20 ㎛ and pico-; <2 ㎛) as a function of total chlorophyll. Here, we examined the applicability of Geostationary Ocean Colour Imager (GOCI) to the mapping of the phytoplankton size class distribution in the East Sea. A fit of the three-component model to a biomarker pigment dataset collected in the study area for some years including a large harmful algal bloom period has been carried out to derive size-fractioned chlorophyll concentration (CHL). The tuned three-component model was applied to the hourly GOCI images to identify the fractions of each phytoplankton size class for the entire CHL. Then, we investigated the distribution of phytoplankton community in terms of the size structure in the East Sea during the harmful Cochlodinium polykrikoides blooms in the summer of 2013.

Temporal and Spatial Variation of Microalgal Biomass and Community Structure in Seawater and Surface Sediment of the Gomso Bay as Determined by Chemotaxonomic Analysis (색소분석을 통한 곰소만 내 해수와 퇴적물 중 미세조류 생체량과 군집구조의 시공간적 변화)

  • Lee, Yong-Woo;Park, Mi-Ok;Yoon, Ji-Hyun;Hur, Sung-Bum
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.2
    • /
    • pp.87-94
    • /
    • 2012
  • To compare monthly variations of phytoplankton biomass and community composition between in seawater and sediment of the Gomso Bay (tidal flat: approximately 75%), the photosynthetic pigments were analyzed by HPLC every month in 1999 and every two months in 2000. Ambient physical and chemical parameters (temperature, salinity, nutrients, dissolved oxygen, and chemical oxygen demand) were also examined to find the environmental factors controlling structure of phytoplankton community. The temporal and spatial variations of chlorophyll a concentration in seawater were correlated well with the magnitude of freshwater discharge from land. The biomass of microphytobenthos at the surface sediments was lower than that in other regions of the world and 2-3 times lower than phytoplankton biomass integrated in the seawater column. Based on the results of HPLC pigment analysis, fucoxanthin, a marker pigment of diatoms, was the most prominent pigment and highly correlated with chlorophyll a in seawater and sediment of the Gomso Bay. These results suggest that diatoms are the predominant phytoplankton in seawater and sediment of the Gomso Bay. However, the monthly variation of chlorophyll a concentration in seawater at the subtidal zone was not a good correlation with that in sediment of the Gomso Bay. Although pelagic plankton was identified in seawater by microscopic examination, benthic algal species were not found in the seawater. These results suggest that contribution from the suspended microphytobenthos in the tidal flat to the subtidal zone of the Gomso Bay may be low as a food source to the primary consumer in the upper water column of the subtidal zone. Further study needs to elucidate the vertical and horizontal transport magnitude of the suspended microphytobenthos in the tidal flat to the subtidal zone.