• Title/Summary/Keyword: Planetary Transmission Analysis

Search Result 59, Processing Time 0.024 seconds

Strength Analysis of Complex Gear Train for Transmission of 21-Ton Grade Wheel Excavator (21톤급 휠 굴착기용 트랜스미션의 기어 트레인에 대한 강도 해석)

  • Lee, JunHee;Bae, MyungHo;Cho, YonSang
    • Tribology and Lubricants
    • /
    • v.38 no.5
    • /
    • pp.179-184
    • /
    • 2022
  • The power train of transmission for 21-ton grade wheel excavator makes use of a complex gear train composed of a planetary and helical gear system to drive the wheel excavator by transmitting power to the axle. The complex gear train with a shift mode is an important part of the transmission because of strength problems in an extreme environment. To calculate the specifications of the complex gear train and analyze the gear bending and compressive stresses of the complex gear train, this study analyzes gear bending and compressive stresses accurately for the optimal design of the complex gear train with respect to cost and reliability. In this article, the gear bending and compressive stresses of the complex gear train are calculated using the Lewes and Hertz equation. Evaluating the results with the data of the allowable bending and compressive stress from the stress and number of cycles curves of the gears verified the calculated specifications of the complex gear train. A computer structure analysis is performed with the 3D model of the planetary and helical gears to analyze the structure strength of the complex gear train. The results demonstrate that the durability and strength of the complex gear train are safe, because the safety factors of the bending and compressive stresses are more than 1.0.

A Study on Power-Flow Analysis of The Lepelletier 6-Speed Automatic Transmission (6 속 자동변속기용 레펠레티아 유성 치차의 동력 해석에 관한 연구)

  • 박진홍;심재경;강봉수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.652-655
    • /
    • 2004
  • In gear-train design, power-flow analysis is a very important process. The method for power-flow analysis apply the power balance equation and torque balance equation to each fundamental circuit. Then, the equation are solved simultaneously to determine the power-flow in planetary gear train. In this paper we perform power-flow analysis of a 6-speed automatic transmission. With this results are used to represent block diagram. In addition, the efficiencies of epicyclic inversion of the 6-speed automatic transmission is obtained.

  • PDF

Power Circulation Characteristics of Hydro-Mechanical transmission System in Steering (정유압 기계식 변속기의 조향시 동력 순환 특성)

  • Kim, J. S.;Kim, W.;Jung, Y. H.;Jung, S. B.;Kim, H. S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.13-22
    • /
    • 1997
  • Power flow characteristics of a hydro-mechanical transmission system(HMT) are investigated for tracked vehicle in steering. A HMT consisting of two hydrostatic pump motors(HST), several planetary gear trains and steer differential gear is considered. In order to obtain the direction and magnitude of the power flow of the HMT, network theory for the general power transmission is used. Network model for the HMT in steering is developed, which consists of shafts, nodes and transmission elements such as clutch, gear, etc. Power flow analysis procedure consists of two stages : (1) traction force analysis in steering, (2) power flow analysis in HMT. Torque and speed of every transmission element of the HMT is determined from the network analysis. Also, efficiency, mechanical and hydraulic power loss including HST, are obtained. In addition, the regenerative power flow resulting from steering can be studied in graphic display. The power flow analysis program(PCSTEER) developed in this work can be used as a useful design tool for the tracked vehicle with HMT.

  • PDF

Power Characteristics Analysis of Hydro-Mechanical Transmission (정유압기계식 변속장치의 동력특성해석)

  • Sung, Duk-Hwan;Lee, Geun-Ho;Kim, Hyun-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.519-524
    • /
    • 2001
  • In this paper, power flow characteristics of a hydromechanical transmission(HMT) are investigated using network analysis. The HMT used in this study consist of a hydrostatic unit(HSU), planetary gear sets, clutches and brakes providing forward 4 speeds and backward 2 speeds. Since the HMT power flows showing a closed loop and the HSU efficiency varies depending on the pressure and speed, a systematic approach is required to analyze the power transmission characteristics of the HMT. In order to analyze the closed loop power flow and the HSU power loss which changes depending on the pressure and speed, network model is constructed for each speed range. In addition, an algorithm is proposed to calculate an accurate HSU loss corresponding to the experimental results. It is found from the network analysis that the torque and speed of each transmission element including the HSU can be obtained as well as direction of the power flow by the proposed algorithm. It is expected that the network analysis can be used in the design of relatively complicated transmission system such as HMT.

  • PDF

Power Transmission Characteristics of a Hydro-Mechanical Transmission (정유압 기계식 변속장치의 동력전달특성)

  • Seong, Deok-Hwan;Kim, Hyeong-Ui;Lee, Geun-Ho;Kim, Hyeon-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1854-1862
    • /
    • 2001
  • In this paper, power flow characteristics of a hydromechanical transmission(HMT) are investigated using network analysis. The HMT used in this study consist of a hydrostatic unit(HSU), planetary gear sets, clutches and brakes providing forward 4 speeds and backward 2 speeds. Since the HMT power flows showing a closed loop and the HSU efficiency varies depending on the pressure and speed, a systematic approach is required to analyze the power transmission characteristics of the HMT. In order to analyze the closed loop power flow and the HSU power loss which changes depending on the pressure and speed, network model is constructed fur each speed range. In addition, an algorithm is proposed to calculate an accurate HSU loss corresponding to the experimental results. It is found from the network analysis that the torque and speed of each transmission element including the HSU can be obtained as well as direction of the power flow by the proposed algorithm. It is expected that the network analysis can be used in the design of relatively complicated transmission system such as HMT.

Assemblability Analysis of Kinematic Configurations of Front-Wheel Drive Automatic Transmissions (전륜구동 차량용 자동변속기의 기구학적 구성에 대한 조립 가능성 분석에 관한 연구)

  • Kwon, Hyun Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.24-34
    • /
    • 2019
  • An automotive automatic transmission is a popular power-transmitting device in passenger vehicles, as it provides various speed ratios for diverse driving conditions with easy manipulation and smooth gear shifting. The transmission is mainly composed of input and output shafts, planetary gear sets, brakes/clutches, and housing, and it yields multiple forward gears and one reverse gear by actuating the shifting devices of the brakes and clutches. In developing a new transmission, kinematic configurations of a transmission, which presents a brief structure and actuation schemes for speed ratios, need to be checked to determine if the structure can be assembled in a layout. It is impossible for a transmission concept having any interference in connecting main components to be developed further in the design process, since connection interference leads to failure of a layout design in the 2-D plane. In this research, an analysis of the assemblability of a front-wheel drive automatic transmission is carried out on an example concept design by applying the vertex addition algorithm based on graph theory.

Study on Tooth Micro-geometry Optimization of Rear Gear Set in 2 Speed Planetary Gear Reducer (2단 유성기어 감속기의 후부기어 치형수정에 관한 연구)

  • Jeon, Min-Hyung;Kim, Lae-Sung;Noh, Seung-Yoon;Zhen, Qin;Choi, Chang;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.1-6
    • /
    • 2017
  • Gear tooth micro-geometry modifications include the intentional removal of material from the gear teeth flanks, so that the shape is no longer a perfect involute. If the gear shapes are perfect, then the gear tooth meshing is better, therefore the gears will transmit input torque in a more efficient manner without the generation of high frequency engine fluctuation noise. In this paper, we study tooth micro-geometry optimization of rear gear set in 2 speed planetary gear reducers. Analysis revealed problems which are need of modification. Based on the results, tooth micro-geometry was used to deal with load distributions on the rear gear set.

Analysis of Driving Performance for the Passenger Car Equipped with an Electronically Controlled Automatic Transaxle (전자제어식 자동변속기 장착 승용차의 구동성능 해석)

  • Kim, S.I.;Lim, W.S.
    • Journal of Power System Engineering
    • /
    • v.6 no.2
    • /
    • pp.73-81
    • /
    • 2002
  • In this study, electronically controlled automatic transmission adopted on a subcompact model in the market was modelled, and the driving performances of the transmission were simulated with the models. Kinetic and dynamic models of working components are established. The driving simulation program is developed with those models, and the various driving conditions are analyzed. With the results, the dynamic behaviour of the engine and the automatic transmission is easily understood. Especially, the transient performances of torque converter and clutches are deeply analyzed. Skipping the vehicle road test by using this analyzing tool, we can expect the cost down and the reduction of the development period of automatic transmission.

  • PDF

Effects of Manual Wheelchairs' Transmission on the Propulsion Motion (수동휠체어의 변속 기능이 추진 동작에 미치는 영향)

  • Shin, Eung-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.225-232
    • /
    • 2007
  • This work intends to investigate the effects of shift characteristics on the propulsion performance of a manual wheelchair with an automatic transmission. A planetary gear train is employed to generate a two-stage shift automatically, based on the distance traveled from rest. Motion analysis has been performed for measuring kinematic properties of the arm and then the inverse dynamics has been applied for estimating joint forces/torques. Then, a parametric study has been performed to find a set of the shift ratios and the shift intervals for optimizing propulsion performance. Results show that the propulsion performance is closely related to the shift condition. It is found that a short shift interval is desirable for a short distance propulsion. However, an optimum shift interval for a long distance propulsion is inversely proportional to the shift ratio approximately. Consequently, the automatic transmission can greatly lower the joint loadings by the speed reduction, which eventually contribute to prevent joint injuries of wheelchair users.

Analysis of Shifting Transients with Emphasis on the Modeling of a Torque Converter (토크 컨버터의 모델링을 중심으로 한 변속과도 특성해석)

  • 임원식;박영일;이장무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.132-141
    • /
    • 1995
  • The torque converter, an important component of automatic transmissions, is a hydrodynamic device which has a great influence on transient characteristics of vehicle during shift. To predict the accurate driving performance in extremely transient state such as shifting process, a detailed analysis of the torque converter is required. In this study, one dimensional performance model of the torque converter based on the concept of mean flow path, was used to analyze the shifting transients and the exact values of equivalent parameters were determined from the experimental results by using BOX program. The dynamic modelings of the components of power transmission systems such as engines, planetary gear systems, clutches and one-way clutches, were carried out. To analyze the shifting transients of tracked vehicle, a simulation program was developed. In the modeling of power transmission systems, the stiffness of shafts was neglected and shifting control logic(TCU) was included. Using the developed simulation program, the driving conditions were simulated and the results of simulation were verified through the experiments on the dynamometer.