• 제목/요약/키워드: Planetary Gear Train

검색결과 54건 처리시간 0.02초

2K-H형 유성기어장치의 효율해석에 관한 연구 (A Study on the Efficiency Analysis of 2K-H Type Planetary Gear Train)

  • 김연수;최성욱;최상훈
    • 한국정밀공학회지
    • /
    • 제17권3호
    • /
    • pp.200-207
    • /
    • 2000
  • The analysis of interference and efficiency are important phases in the design of planetary gear train. Because most planetary gear trains contain internal gear called ring gear, interferences between ring gear and planet gear should be analyzed in the step of design and manufacturing. Addendum modification coefficient, pressure angle, speed ratio between ring gear and sun gear are governing factors for interferences. In this paper, the interferences of 2K-H I type planetary gear train based on various planetary gear trains are studied. As that results, the ranges of addendum modification coefficients which would not lead to interferences is analyzed. Based on these ranges, theoretical efficiencies are investigated as 6 configurations of 2K-H I type planetary gear train, which is based on basic efficiency, and optimal addendum modification coefficients which generate the maximum efficiency of planetary gear train are presented. To prove results of theoretical efficiency analysis, experimentations are performed.

  • PDF

시뮬레이티드 어닐링을 이용한 유성치차열의 최적설계에 관한 연구 (Study on the optimal design for Planetary Gear Train using simulated annealing)

  • 최용혁;정태형;이근호
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.172-177
    • /
    • 2004
  • A planetary gear trains has characteristics in compactness, power transformation ability and constant meshing. Usability is increased in applications of auto transmission and industrial gearbox. Study on optimum design of planetary gear train has been progressed on minimization of weight, miniaturization of planetary gear train and improvement of high strength. There are demands of study for the planetary gear train required long lift estimation In this wort being considered life, strength, intereference, contact ratio and aspect ratio, the optimum design algorithm is proposed to reduce the volume of planetary gear train with transferring the same amount of power. In the design of algorithm for planetary gear train, the determination of teeth number is separated to achieve simplicity and the simulated annealing method as a global optimal technique is used for optimal design method.

  • PDF

시뮬레이티드 어닐링을 이용한 유성치차열의 설계요소 최적화에 관한 연구 (Study on the Optimal Design for Design Parameter of Planetary Gear Train Using Simulated Annealing)

  • 이근호;최용혁;정태형
    • 한국공작기계학회논문집
    • /
    • 제14권1호
    • /
    • pp.58-65
    • /
    • 2005
  • A planetary gear trains has characteristics in compactness, power transformation ability and constant meshing. Usability is increased in applications of auto transmission and industrial gearbox. Study on optimum design of planetary gear train has been progressed on miniaturization of weight, miniaturization of planetary gear train and improvement of high strength. There are demands of study f3r the planetary gear train required long life estimation. In this work being considered life, strength, interference, contact ratio and aspect ratio, the optimum design algorithm is proposed to reduce the volume of planetary gear train with transferring the same amount of power. In the design of algerian for planetary gear train, the determination of teeth number is separated to achieve simplicity and the simulated annealing method as a global optimal technique is used far optimal design method.

유성기어열의 기구학적 특성분석에 관한 연구 (A Study on Kinematic Characteristics of Planetary Gear Train)

  • 박세환;신중호;윤호업;김대원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.643-646
    • /
    • 1997
  • Gear trains are used in many machinery for variable speed ratios. Typical shapes of gear trains are tivo categories : simple gear trains and planetary gear trains. This paper presents the kinematic ctraracteristics for planetary gear trains. The characteristics are the constraints of geometric relationships, number of gears, speed of each gear. and speed ratio of the train. The objective goal of this paper provides the CAI) software, which is the academic tool for understanding the kinematics of the planetary gear trains.

  • PDF

A Strength Analysis of Gear Train for Hydro-Mechanical Continuously Variable Transmission

  • Bae, Myung Ho;Bae, Tae Yeol;Yoo, Young Rak
    • International Journal of Advanced Culture Technology
    • /
    • 제6권3호
    • /
    • pp.163-172
    • /
    • 2018
  • The power train of hydro-mechanical continuously variable transmission(HMCVT) for the middle class forklift makes use of an hydro-static unit, hydraulic multi-wet disc brake & clutches and complex helical & planetary gears. The complex helical & planetary gears are a very important part of the transmission because of strength problems. The helical & planetary gears belong to the very important part of the HMCVT's power train where strength problems are the main concerns including the gear bending stress, the gear compressive stress and scoring failures. The present study, calculates specifications of the complex helical & planetary gear train and analyzes the gear bending and compressive stresses of the gears. It is necessary to analyze gear bending and compressive stresses confidently for an optimal design of the complex helical & planetary gears in respect of cost and reliability. This paper not only analyzes actual gear bending and compressive stresses of complex helical & planetary gears using Lewes & Hertz equation, but also verifies the calculated specifications of the complex helical & planetary gears by evaluating the results with the data of allowable bending and compressive stress from the Stress - No. of cycles curves of gears. In addition, this paper explains actual gear scoring and evaluates the possibility of scoring failure of complex helical & planetary gear train of hydro-mechanical continuously variable transmission for the forklift.

플러그 방식 승객용 출입문의 변속장치 개발 (Development on a Transmission Unit for a Plug Type Passenger Door)

  • 김연수;홍재성;박성혁;이관섭;백영남
    • 한국철도학회논문집
    • /
    • 제4권2호
    • /
    • pp.55-61
    • /
    • 2001
  • Since the plug type passenger door has two modes of motion, a power transmission unit must be capable of plug-in or plug-out mode, and sliding mode. Complex planetary gear train is proposed, which is composed of two 2K-H, I type planetary gear units. For the proposed complex planetary gear train, ranges of addendum modification coefficients which would not lead to interferences are analyzed, and optimal addendum modification coefficients among these ranges which generate the maximum efficiency are presented. Based on the results of analysis on interferences, efficiencies and torque ratios, the specifications for the complex planetary gear train were determined. It has been shown by tests of the complex planetary gear train manufactured that the gear train worked well with good agreements of analysis.

  • PDF

1.7톤급 소형 굴착기용 주행 감속기의 복합 유성기어류에 대한 강도 평가 (Strength Evaluation of Complex Planetary Gear Train of Traveling Reducer for 1.7-Ton Grade Small Excavator)

  • 남석주;배명호;조연상
    • Tribology and Lubricants
    • /
    • 제38권1호
    • /
    • pp.22-26
    • /
    • 2022
  • A 1.7-ton grade small excavator is a construction equipment that can perform various functions in limited spaces where heavy equipment cannot enter easily. Owing to the recent acceleration of urbanization, it has been used increasingly in drainage and gas pipes, as well as for road repair works in urban areas. The power train of a traveling reducer for a 1.7-ton grade small excavator utilizes a complex planetary gear system. Complex planetary gears are vital to the power train of a traveling reducer as it mitigates the fatigue strength problem. In the present study, the specifications of a complex planetary gear train are calculated; furthermore, the gear bending and compressive stresses of the complex planetary gears are analyzed to achieve an optimal design of the latter in terms of cost and reliability. In this study, the actual gear bending and compressive stresses of a planetary gear system are analyzed using a self-developed gear design program based on the Lewes and Hertz equation. Subsequently, the calculated specifications of the complex planetary gears are verified by evaluating the results with the data of allowable bending and compressive stress based on curves of stress vs. number of cycles of the gears.

복합유성기어장치를 적용한 플러그 방식 출입문의 변속장치 (Complex Planetary Gear Train for a Plug type Passenger Door)

  • 김연수;홍재성;박성혁;백남욱;이병송
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 춘계학술대회 논문집
    • /
    • pp.170-177
    • /
    • 2001
  • Since plug type passenger door has two motion modes, power transmission unit must be capable of plug-in or plug-out, and sliding mode. Complex planetary gear train is proposed, which is composed of two 2K-H, I type planetary gear units. For the proposed complex planetary gear train, ranges of addendum modification coefficients which would not lead to interferences is analyzed, and optimal addendum modification coefficients among these ranges which generate the maximum efficiency are presented. Based on the interference, efficiency and torque ratio analysis results, complex planetary new train is designed and manufactured.

  • PDF

비원형 유성기어열을 사용한 이앙기 식부기구의 설계 (Design of a rice transplanting mechanism with noncircular planetary-gear-train system)

  • 배강열
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.108-116
    • /
    • 2005
  • Transplanting accuracy of a rice transplanter mainly depends on the trajectory of the hoe for picking, conveying and transplanting of seedlings as well as the return motion. The trajectory can be decided and prescribed to be suitable in treating seedlings fur a prevailing soil condition. For the purpose of the transplanting accuracy, the design of a transplanting mechanism would be carried out using a planetary-gear-train system instead of the four bar linkage system. In this study, a design method of transplanting mechanism is theoretically proposed by synthesizing a noncircular planetary-gear-train system fur the tool (hoe) to trace a prescribed trajectory. The method utilizes an optimization approach to decide the lengths of an arm and a tool, the inverse kinematics to figure out the configuration angles of the two links, the roll contact condition in transmitting motion between the gears, and a linearization approach to obtain the shapes of the gears. Based on the proposed method, the shapes of the gears and the lengths of the tools of the planetary-gear-train system are determined fur three prescribed trajectories. A kinematical simulation with a commercialized package program is also carried out to confirm that the gear-train system synthesized with the proposed method is able to trace the prescribed trajectory.

풍력발전용 피치 드라이브 시스템의 복합 유성기어류에 대한 피로 강도해석 (Fatigue Strength Analysis of Complex Planetary Gear Train of the Pitch Drive System for Wind Turbines)

  • 김광민;배명호;조연상
    • Tribology and Lubricants
    • /
    • 제37권2호
    • /
    • pp.48-53
    • /
    • 2021
  • Wind energy is considered as the most competitive energy source in terms of power generation cost and efficiency. The power train of the pitch drive for a wind turbine uses a 3-stage complex planetary gear system in being developed locally. A gear train of the pitch drive consists of an electric or hydraulic motor and a planetary decelerator, which optimizes the pitch angle of the blade for wind generators in response to the change in wind speed. However, it is prone to many problems, such as excessive repair costs in case of failure. Complex planetary gears are very important parts of a pitch drive system because of strength problem. When gears are designed for the power train of a pitch drive, it is necessary to analyze the fatigue strength of gears. While calculating the specifications of the complex planetary gears along with the bending and compressive stresses of the gears, it is necessary to analyze the fatigue strength of gears to obtain an optimal design of the complex planetary gears in terms of cost and reliability. In this study, the specifications of planetary gears are calculated using a self-developed gear design program. The actual gear bending and compressive stresses of the planetary gear system were analyzed using the Lewes and Hertz equation. Additionally, the calculated specifications of the complex planetary gears were verified by evaluating the results from the Stress - No. of cycles curves of gears.