• Title/Summary/Keyword: Planetary Gear Reducer

Search Result 33, Processing Time 0.024 seconds

The speed reducer of torque meter type with damping (Damping을 갖는 토크미터형 감속기)

  • Song, Chang-Hun;Lee, Woo-Min;Oh, Se-Hoon;Lee, Chong-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.471-475
    • /
    • 2001
  • Planetary Speed Reducer consists of a sun gear, a planetary gear and a ring gear and if one element is fixed at this Speed Reducer, another elements operate to become a drive-axis and a subordination-axis respectively. Planetary Speed Reducer is frequently used for gear Speed Reducer because it has the advantage of having the high efficiency and getting the high Speed Reducer ratio in small space. However, it is difficult to know the current transmitted torque immediately during the use of Speed Reducer and so complicated equipment is installed in addition to protect the overload of system. The object of this paper is to design the Speed Reducer of torque- meter type that can know the torque transmitted using the power transmission feature of a simple Planetary Speed Reducer fixed at ring gear.

  • PDF

The Effect of Addendum Modification Coefficient on Gear Strength to Planetary Gear Reducer (유성기어 감속기에서 전위계수가 기어 강도에 미치는 영향)

  • Kwak, Ki-Suk;Han, Dong-Seop
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.38-43
    • /
    • 2011
  • Industrial reducer is in general use to Deck Crane. High-precision and high-efficient reducer is minimized the power-loss and energy-loss of a machine. So it contribute the price reduction and life extension. Reducer is usually using the Planetary gear reducer. Planetary gear reducer is composed the sun gear, planet gear, internal gear and casing. Industrial reducer's wear and breakage have a short-life. To solve this problem, it is using the profile-shifted-gear or tooth modification. This study was carried out the effect of addendum modification coefficient on tooth fillet bending strength to planetary reducer. Tooth fillet bending stress is calculate. And all parameter were expressed the function of addendum modification coefficient. And then stress concentration factor of tooth fillet curve was express the function of addendum modification coefficient using comparison between theory and finite element analysis.

The Stress Analysis of Planetary Gear System of Mixer Reducer for Concrete Mixer Truck

  • Bae, Myung Ho;Bae, Tae Yeol;Cho, Yon Sang;Son, Ho Yeon;Kim, Dang Ju
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.77-81
    • /
    • 2015
  • In general, the gears of mixer reducer for concrete mixer truck make use of the differential type planetary gear system to rotate mixer drum smoothly on the initial conditions. The planetary gear system is very important part of mixer reducer for concrete mixer truck because of strength problem. In the present study, calculating the gear specifications and analyzing the gear bending & compressive stresses of the differential planetary gear system for mixer reducer are necessary to analyze gear bending and compressive stresses confidently, for optimal design of the planetary gear system in respect to cost and reliability. As a result, analyzing actual gear bending and compressive stresses of the planetary gear system using Lewes & Hertz equation and verifying the calculated specifications of the planetary gear system, evaluate the results with the data of allowable bending and compressive stress from the Stress-No. of cycles curves of gears.

Development of High-Ratio Planetary Reduction Gears Applied Differential Ring Gear Type (차동 링기어 방식의 고비율 유성기어 감속기 개발)

  • 박규식;이기명;김유일
    • Journal of Biosystems Engineering
    • /
    • v.22 no.4
    • /
    • pp.497-502
    • /
    • 1997
  • Automation facilities of greenhouses have been continuously developed. However, the conventional two-stage worm gear reducer reveals some problems, including low transmission efficiency. The worm gear reducer also have some difficulties in manufacturing and short life. Therefore, this study was performed to develop a planetary gear reducer, having a high Sear reduction ratio and high torque transmission efficiency. The planetary gear system consisted of a fixed ring gear and a 2-teeth differential ring gear turning slow, as the planetary pinion orbits fast around the fixed ring gear. The developed gear system can achieve a high speed reduction rate at one stage. The reducing system was employed to the greenhouse ventilation system. The reducer has the transmission efficiency of 70.5%, 2∼3 times longer life time, and twofold roll-up torque at an affordable price, comparing with conventional reducers. This reducer can be also applied to many industrial equipments, such as industrial crane, hoist, elevator and gondola etc.

  • PDF

Stress Analysis and Design Modification of the Planetary Gear Reducer of an In-wheel System (인휠 시스템용 유성 기어 감속기의 응력 해석 및 개선 설계)

  • Jung, Sung-Pil;Chung, Won-Sun;Park, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.732-737
    • /
    • 2011
  • The planetary gear reducer becomes more and more widely used in machine industries. The planetary gear reducer has a significant role to transmit power to wheel & tire module in the In-wheel system. Thus, the planetary gear reducer should have strong stiffness and durability. In this paper, the contact and bending stresses at the tooth of the planetary gear reducer are analyzed using MASTA, a commercial gear design and analysis software. Stress distribution at the tooth face of the sun, planetary and annulus gears are obtained using the finite element method. The design modification is performed using the response surface method. The usefulness of the design modification and optimization method presented in this paper is verified by comparing the maximum stresses of the original and optimized planetary gear tooth.

Developing Planetary Gear Reduction Design Software for the Planetary Gear Design and Durability Strength Analysis of Armored Vehicle's Transmission (장갑차용 트랜스미션의 유성기어 설계 및 내구 강도 분석을 위한 유성기어 감속기 설계 소프트웨어의 개발)

  • SinHyun Kang;SungHo Park;YonSang Cho
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.173-182
    • /
    • 2023
  • The composite planetary gear reducer, a power transmission component of armored vehicles, operates at a high torque and is used in severe environments such as mountain, gravel or unpaved roads. Therefore, they must be designed and manufactured to have high durability. To design such a planetary gear reducer, there are numerous specifications to validate, such as selecting the module and the number of teeth of each gear satisfied the requirements, and calculating gear specifications and durability strength. Because planetary gears constitute a combination of several gears, there are many restrictions and interferences in selecting the number of teeth and addendum modification coefficients, and designing the tooth shape. Developing an auto design program is necessary to design various planetary gears more conveniently and quickly. In this study, a planetary gear reducer design software, widely used in various machines and armored vehicles, was developed. This design software can automatically select the number of teeth and modules of the gears, calculate specifications and quickly evaluate its fatigue durability strength and scoring failure according to the planetary gear reducer design theory.

The Critical Speed Analysis of the Differential Planetary Gear Train of a Concrete Mixer Truck Mixer Reducer (콘크리트 믹서 트럭용 믹서 감속기의 차동 유성 기어 트레인에 대한 위험속도 해석)

  • Bae, Myung Ho;Bae, Tae Yeol;Kim, Dang Ju
    • Journal of Drive and Control
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • The power train of a concrete truck mixer reducer includes differential planetary gears to get a large reduction ratio for operating the mixer drum in a compact structure. These differential planetary gears are a very important part of the mixer reducer where strength problems are the main concern. Gear bending stress, gear compressive stress and scoring failure are the main concerns. Many failures in differential planetary gears are due to the insufficient gear strength and resonance problems caused by major excitation forces such as gear mating failure in the transmission. In the present study, where the excitation frequencies are the gear tooth passing frequencies of the mating gears, a Campbell diagram is used to calculate differential planetary gear critical speeds. Mode shapes and natural frequencies of the differential planetary gears are calculated by CATIA V5. These are used to predict gear resonance failures by comparing the working speed range with the critical speeds due to the gear transmission errors of the differential planetary gears.

Strength Evaluation of Complex Planetary Gear Train of Traveling Reducer for 1.7-Ton Grade Small Excavator (1.7톤급 소형 굴착기용 주행 감속기의 복합 유성기어류에 대한 강도 평가)

  • Nam, SeockJu;Bae, MyungHo;Cho, YonSang
    • Tribology and Lubricants
    • /
    • v.38 no.1
    • /
    • pp.22-26
    • /
    • 2022
  • A 1.7-ton grade small excavator is a construction equipment that can perform various functions in limited spaces where heavy equipment cannot enter easily. Owing to the recent acceleration of urbanization, it has been used increasingly in drainage and gas pipes, as well as for road repair works in urban areas. The power train of a traveling reducer for a 1.7-ton grade small excavator utilizes a complex planetary gear system. Complex planetary gears are vital to the power train of a traveling reducer as it mitigates the fatigue strength problem. In the present study, the specifications of a complex planetary gear train are calculated; furthermore, the gear bending and compressive stresses of the complex planetary gears are analyzed to achieve an optimal design of the latter in terms of cost and reliability. In this study, the actual gear bending and compressive stresses of a planetary gear system are analyzed using a self-developed gear design program based on the Lewes and Hertz equation. Subsequently, the calculated specifications of the complex planetary gears are verified by evaluating the results with the data of allowable bending and compressive stress based on curves of stress vs. number of cycles of the gears.

Design of Planetary Gear Reducer Driving part to Possible Disadhesion from Electric Wheelchair (전동 휠체어에 탈·부착이 가능한 유성기어 감속기 구동부 설계)

  • Youm, Kwang-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.2
    • /
    • pp.9-13
    • /
    • 2022
  • Electric wheelchairs, the output from the motor is mainly applied to a speed reducer using a power transmission device such as a belt or a chain. However, although a speed reducer using a belt or chain is a simple device, it occupies a lot of space and has a space limitation, so it is not suitable for an electric wheelchair driving part. However, since the speed reducer of the planetary gear type is decelerated on the same axis, the volume can be reduced, so the space constraint is less than that of the belt or chain type reducer. Therefore, in this study, a driving part that can obtain great propulsion with a speed reducer using a planetary gear type was developed through a study on the driving part of a wheelchair that can be switched between manual and electric. Accordingly, the tooth shape of the planetary gear applied to the reducer was designed using the Kisssoft program. In addition, the drive part was designed to be applicable to the existing wheelchair wheels, and the mechanism was optimized for the manual/electric switching principle and operation principle of the drive part. Based on the research contents, the final design and manufacture of the wheelchair reducer drive unit in the form of a planetary gear having one sun gear, two planetary gears and one ring gear was carried out.

Development of Reducer for Generating Facility of Electric Power for Low Noise/vibration (소음/진동을 고려한 발전설비용 감속기 개발)

  • Lee, Hyoung-Woo;Park, Chul-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.11
    • /
    • pp.73-82
    • /
    • 2008
  • A dynamic model of reducer for generating facility of electric pourer having bevel gear pair and planetary gear train is developed by lumped method. The model accounts for the shaft and bearing flexibilities, gyroscopic effects and the force couplings among the transverse and torsion motions due to gearing. Vibration/noise analysis as well as strength of bevel gear pair and planetary gear train are considered. Exciting forces of high reducer for generating facility of electric power areconsidered as the mass unbalance of the rotors, misalignment and a function of gear transmission error. A Campbell diagram, in which the excitation sources caused by the mass unbalance of the rotors, misalignment and the transmitted errors of the gearing are considered, shows that, at the operating speed, there are not critical speed.