• Title/Summary/Keyword: PlaneWave

Search Result 886, Processing Time 0.024 seconds

A Theoretical Study on Interface Characteristics of SiC Particulate Reinforced Metal Matrix Composite Using Ultrasonics (초음파를 이용한 입자강화 금속복합재료의 계면특성에 관한 이론적 연구)

  • Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.4
    • /
    • pp.9-17
    • /
    • 1994
  • It is well recognized recently that ultrasonic technique is one of the most widely used methods of nondestructive evaluation to characterize material properties of nonconventional engineering materials. Therefore it is very important to understand physical phenomenon on propagation behavior of elastic wave in these materials, which is directly associated with ultrasonic signals in the test. In this study, the theoretical analysis on multi-scattering of harmonic elastic wave due to the particulate with interface between matrix and fiber in metal matrix composites(MMCs) was done on the basis of Lax's quasi-crystalline approximation and extinction theorem. SiC particulate (SiCp) reinforced A16061-T6 composite material was chosen for this analysis. From this analysis, frequency dependences of phase velocity and amplitude attenuation of effective plane wave due to the change of volume fraction of SiC particulate were clearly found. It was also shown that the interface condition between matrix and fiber in MMCs gives a direct effect on the variation of phase velocity of plane wave in MMCs.

  • PDF

Effects of diffraction in regular head waves on added resistance and wake using CFD

  • Lee, Cheol-Min;Park, Sung-Chul;Yu, Jin-Won;Choi, Jung-Eun;Lee, Inwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.736-749
    • /
    • 2019
  • This paper employs computational tools to investigate the diffraction effects in regular head waves on the added resistance and wake on the propeller plane. The objective ships are a 66,000 DWT bulk carrier and a 3,600 TEU container ship. Fixed and free to heave and pitch conditions at design speed have been taken into account. Two-phase unsteady Reynolds averaged Navier-Stokes equations have been solved using the finite volume method; and a realizable k-ε model has been applied for the turbulent closure. The free surface is obtained by solving a VOF equation. The computations are carried out at the same scale of the model tests. Grid and numerical wave damping zones are applied to remove unwanted wave reflection at the boundaries. The computational results are analyzed using the Fourier series. The added resistances in waves at the free condition are higher than those at the fixed condition, which are nearly constant for all wavelengths. The wake velocity in waves is higher than that in calm water, and is accelerated where the wave crest locates on the propeller plane. When the vertical motion at the stern goes upward, the wake velocity also accelerated.

Study on the Affects of Mounting Axisymmetric Inlet to Airframe

  • Ando, Yohei;Matsuo, Akiko;Kojima, Takayuki;Maru, Yusuke;Sato, Tetsuya
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.699-702
    • /
    • 2004
  • In this study, the affect of mounting axisymmetrical supersonic inlet to airfoil, which has 65 degree swept angle was numerically investigated. The parameter for this calculation are tree stream Mach number M=2.0 and 2.5, the distance between inlet spike and airfoil lower surface $L_{sw}$/$R_{cowl}$ = 1.21-1.54 and angle of attack to the airfoil 0-4. The mass capture ratio improved 3points in M=2.0 condition and 1points in M=2.5 while the mass capture ratio without airfoil surface was 57% and 71 % for each case. These are the result from increase of density and change of velocity deflection by the shock wave structure formed between inlet and airfoil surface. On the other hand, the distortion of Mach number at cowl lip plane increased by 13% in M=2.0, 3% in M=2.5 condition. The effects of the angle attack on the mass capture ratio is greater than that of the shock wave interaction between inlet and cowl, but the effects to the distortion is smaller in the range of this calculation condition. In the condition of M=2.0 with 4 degrees of angle of attack, inlet distortion of Mach number is mainly caused by the affects of the shock wave interaction between inlet and airfoil surface, while the largest angle of the velocity vector in the radial direction at cowl lip plane is caused by the affect of angle of attack. This large velocity vector made the flow inside the cowl subsonic and caused spillage, which interfere with the boundary layer of airfoil surface.

  • PDF

Variation of Incident Wave Angle in the Surf Zone Observed from Digital Videos (해안 비디오로부터 관측된 쇄파지역에서 입사각의 변화)

  • Yoo, Je-Seon;Shin, Dong-Min;Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.154-163
    • /
    • 2009
  • Incident wave angles are conventionally estimated by the directional spectrum analysis of wave data collected from in-situ sensors. The in-situ measurements are limited in monitoring incident wave angles in the wide surf zone, since the techniques are typically expensive, labor-intensive, and point-measuring. In this study, estimation of incident wave angles using wave crest features captured in digital video imagery is proposed to observe incident wave directions over the surf zone. Line signatures of wave crests having high image pixel intensities are extracted by moving an interrogation window to identify high intensity pixels in sequential video images. Wave angles are computed by taking the first derivative of the extracted crest signatures, i.e. local slope of the crest signatures in the two-dimensional physical plane. Compared to the wave angle estimates obtained by the directional spectrum analysis, video-based wave angle estimates show good agreements in general.

A Study on the development of Tuna Purse Seiner (참치 선망 어선의 선형개발에 관한 연구)

  • 김인철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.3
    • /
    • pp.335-342
    • /
    • 1999
  • The purpose of present research is to develop and efficient numerical method for the calculation of potential flow and predict the wave-making resistance for the application to ship design of tuna purse seiner. Havelock was considered the wave resistance of a post extending vertically downwards through the water from the surface, its section by a horizontal plane being the same at all depths and having its breadth small compared with its length. This enables us to elucidate certain points of interest in ship resistance. However, the ship has not infinite draft. So, the problem which is investigated ind detail in this paper is the wave resistance of a mathematical quadratic model in a uniform stream. The paper deals with the numerical calculation of potential flow around the series 60 with forward velocity by the new slender ship theory. This new slender ship theory is based on the asymptotic expression of the Kelvin-source, distributed over the small matrix at each transverse section so as to satisfy the approximate hull boundary condition due to the assumption of slender body. The numerical results using the panel shift method and finite difference method are compared with the experimental results for wigley mono hull. There are no differences in the wave resistance. However, it costs much time to compute not only wave resistance but also wave pattern over some range of Froude numbers. More improvements are strongly desired in the numerical procedure.

  • PDF

Development of Random Wave Deformation Model due to Breaking on Arbitrary Beach Profiles (복합단면에 있어서 불규칙파에 의한 쇄파변형 모델의 개발)

  • ;Yoshimi Goda
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.1
    • /
    • pp.87-94
    • /
    • 1996
  • Random wave breaking is one of the most important phenomena in coastal engineering. For two and half decades, various models have been proposed to predict wave height variations in the surf zone. However, some models are applicable to plane beaches only, some requires clumsy computation for a joint probability density of wave heights and periods, and some others need calibration with individual wave data. The present study aims at formulating a model simple enough but reasonably accurate. The merits of the present model are as follows: It is applicable to any shapes of bottom profiles; It requires the input data of incident wave heights and periods only without necessity of coefficient calibration with field data; and its computation time is minimal because it deals with representative waves directly.

  • PDF

Wavefront Aberration Measurement of DVD pick-up lenses with a Shack-Hartmann Sensor and a Point Source (Shack-Hartmann 파면분석기와 점광원을 이용한 DVD 픽업 렌즈의 수차 측정)

  • Kang, Dong-Won;Lee, Jin-Seok;Hahn, Jae-Won
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.3
    • /
    • pp.135-138
    • /
    • 2007
  • Using a Shack-Hartmann sensor and sub-wavelength sized pinhole point source, we develope an optical testing system that measures the wavefront error of high numerical aperture and small sized optical components. The subwavelength sized pinhole generates perfect spherical waves with large diffraction angle and this makes possible to test high numerical aperture optics. The Shack-Hartmann sensor reconstructs the wavefront and calculates the aberrations. We make a home-made reference plane wave source which generates nearly perfect plane waves and the calibration with this plane source gives the overall uncertainty of the optical testing system 0.010 $\lambda$ rms.

  • PDF

H-Polarized Scattering by an Inversely Tapered Resistive Half Plane (반비례적으로 변하는 저항율을 갖는 반평면에 의한 H 분극산란)

  • Yang, Seung-In;Ra, Jung-Woong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.7
    • /
    • pp.1-7
    • /
    • 1989
  • For H-polarized incident plane wave, an exact integral expression for the scattered field by an inversely tapered resistive half plane is obtained by using Kontorovich-Lebedev transform. Uniform asymptotic results available for all angles are obtained, and non-uniform asymptotic results which provide the ray-optical interpretation of the calculated scattered field are also obtained. The edge diffraction patterns for several values of inverse proportionality of resistivity are shown. We find out that the results are in agreement with physical reasoning.

  • PDF

Inundation Simulation Using LES-WASS-3D in the Coastal Zone (LES-WASS-3D를 이용한 연안에서의 침수시뮬레이션)

  • Hur, Dong-Soo;Lee, Woo-Dong;Yeom, Gyeong-Seon
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.34-39
    • /
    • 2008
  • The aim of this study is to investigate the inundation characteristics over coastal area due to the variation of sea level and plane arrangement of manholes using the 3D numerical model that is able to simulate directly interaction of WAve Structure Sandy beach(LES-WASS-3D). At first, The adopted model was validated through the comparison with an existing experimental data and showed fairly nice agreement. And then, the inundation characteristics over coastal area are discussed in relation to the variation of sea level and plane arrangement of manholes.

A Study on Measurement of Crack Length by using Laser Speckle Interferometry (레이저 스페클 간섭을 이용한 균열 길이 측정에 관한 연구)

  • Kang, Young-June;Bae, Jin-Kil;Ryu, Weon-Jae;Park, Nan-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.34-41
    • /
    • 2001
  • More accurate and fast inspection method for mechanical parts and structure is required to guarantee the safety. Conventional methods using compliance method, eddy current method, ultrasonic wave, acoustic emission for non-destructive testing in mechanical parts and structure have been performed as the method of contact with objects to be inspected. With this reason these methods have been taken relatively much time, money, and manpower. In this study, in order to overcome these shortcomings, we used In-plane Electronic Speckle pattern Interferometry(In-plane ESPI) that was full-field measurement and noncontact method. We detected the cracks of the specimen at a real time and measured the length of the crack by using In-place ESPI system. Finally, we compared this results with conventional microscope method.

  • PDF