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H-Polarized Scattering by an Inversely Tapered

Resistive Half Plane
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Abstract

For H-polarized incident plane wave, an exact integral expression for the scattered field by an

inversely tapered resistive half plane is obtained by using Kontorovich-Lebedev transform. Uniform
asymptotic results available for all angles are obtained, and non-uniform asymptotic results which
provide the ray-optical interpretation of the calculated scattered field are also obtained. The edge
diffraction patterns for several values of inverse proportionality of resistivity are shown. We find

out that the results are in agreement with physical reasoning,

1. Introduction

Resistive materials are of interest for radar cross
section reduction. The uniform resistive half
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plane has been studied{1] and the uniform or
tapered resistive strips are also studied[2,3]. For
the backscattering from the tapered resistive
strips, numerical results show that the smooth
variation of the resistivity reduces the near edge-on
backscattering below that of the uniform resistive
strip. This leads us to seek the sqlution for an
electromagnetic plane wave incident on a varying
resistive half plane.

Wedge of constant and varying impedance walls
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are studied[4,5), but do not provide any informa-
tion for the scattered electromagnetic wave from
the resistive half plane of varying resistivity.

As a particular case when the resistivity varies
linearly with distance from the edge of the
resistive half plane, an exact intergral expression
for the scattered field for the plane wave incidence
of electric polarization was obtained by using
Kontorovich-Lebedev transform [6].

In this paper for H-polarization case, an exact
integral expression for the scattered field by a half
plane with inversely varying resistivity is also
obtained in the same way for E-polarization case.
The integral converges in a limited angular region
and could be analytically continued to be valid in
the whole angular region. Uniform and non-
uniform asymptotic results for the scattered field
are obtained, which provide the ray-optical inter-
pretation. Our results are in agreement with
physical reasoning. As the inverse proportionality
of resistivity decreases, the edge diffraction
coefficient is shown to approach that of a con-
ducting half plane,

II. Kontorovich-Lebedev Transform

An electromagnetic plane wave H-polarized in
z-direction is incident upon a resistive half plane
with incident angle ¢, 0 <¢_ < m, as shown in
Fig. 1. The scattered field H} satisfies the Hel-
mholiz equation

(Vi +KHZ=0 (1)
subject to the boundary conditions on the resistive
sheet for the total field as

(9Hz/2¢)#23.= 0 (2a)
OHz/0¢ |4 o=jkeR (H;) t-5x—ja (H.) 322 (2b)

where { ] denotes the discontinuity across
the half plane, k is the wave number of free space,
and R=a/kp is the resisitivity normalized to the
free space intrinsic impedance and inversely
proportional to p.

In order to apply the Kontorovich-Lebedev
(K-L) transform [ 6]

f(ko) = l.‘/m vF (v) exp(—jun) sinvzHY (kp)dv
4 J_,.
(32)
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Fig.1. Resistive half plane and field points.

F)= [ atle) H
k= 1k exp(—ja),

(ke)do,

0 <a<nm (3

.one may introduce f to assume the convergence of

the transform in (3b) as

f(o, ) =H; (o, ) —fo exp(—ijkp) (4a)
where
fo=H; (=0, ¢) (4b)

so that f becomes zero as p approaches zero or

lim (o, $)=0 . (5)

The edge condition for the ¢ component of
electric field yields
hm o 31/80=0. (5b)

Assuming a slightly lossy medium in free space,
the far field satisfies the boundary conditions

11,152 flo, =0 (5¢)
lim 9f/9p= 0. (5d)

Substituting H; in (4a) into (1), one obtains
a differential equation for f,
11 ik .
(V4K f= ko exp (—jkp) (6)

and one obtains a differential equation for F(v, ¢)
by K-L transform!®) as
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v

(32/29¢*+ v ) F (v, ) =j2fo—

smunr

exp(jun/2),
(7)

the solution of which has been easily obtained as

F (v, ) =A(v)cos (vg¢) +B (v) sin(vg) +
12fo exp(jun/2)

vsin{vn)

(8)

where A(v) and B(v) are arbitrary constant to be
determied from the boundary conditions defined
in (2).

The total field is expressed as

H;=explikp cos(¢—¢o)} +H3 (9)
Substituting (4a) and (9) into (2), one obtains
the corresponding boundary conditions for f along
the resistive sheet. The K-L transform then yields
the boundary conditions for F as

F (v, $) 1" _
{ a¢ ], 0 (10a)
OF (v, ¢) s =0 _
'T¢ .o ja [F]o=ur
—j2 exp(‘jugLZ)sinU(lr-%) (10b)
sinvr

Subsituting (8) into (10), one obtains A and B
constants and then F in (8) becomes

2exp (jun/2) (=

jv sin(vn)

F(v, ¢)= —W(v, ¢)] (11a)

where

v sinv(7—¢o) sinv(r—¢)

v cosvrm +j2a sinux

W(v, ¢)=

(11b)

Since the inverse K-L transform of the first term
in the right hand side of (11a) equals the addi-
tional term -f o exp(4kp), the scattered field
becomes the inverse K-L transform of the second
term in (11a), i.e.

Hz (p, ¢)= _[m W (v, ¢) exp(—jur/2)HP (kp)dv.
(12

From the convergence requirement, it is noted
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that the restriction |¢-mj <¢0 must be imposed,
i.e. the representation is valid only in the region
where HJ is an outgoing cylindrical wave. For the
other angular regions, the analytical continuation
of the integral (12) may be used.

M. Analytic Continuation and Asymptotic
Approximation

We may decompose W(p, ¢) as

W, §=[(W-—d)+d (13)
where
_v expliv(do— &} _ i
d= ==, ) ¥ !¢ (14)

is that part of W which diverges in either reflection
fegion (0 < ¢ <1r-¢°) or shadow region (T+¢ <
¢<2m), as shown in Fig.1.

Let

"
L~ [ We (v, 8) exp(—jon/2) HP (ko)do,

(k=1,2) (15)

where W,;=d and W,=W-d. Then the integral I,
converges for all values of ¢. The integral I;, on
the other hagnd, may be obtained by using the
integral representation! 7}

HY (kp) = M [w exp{(—jko cosht—ut)dt

—1<Rev< 1 (16)

and after reversal of the order of the integraton
permissible in | ¢-7 |<¢0 as

I,=(ja/ ) [,., exp(—jkp cosht+w)

{Ex (w) —exp (—w) /wh dt (7)
where
w=2a{—t+j (go— @)} (18)
and
E, (w) =‘/:l ﬂ(:'a&)-d,u, larg wl <z (19)
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is the exponential intergal [8].

The exponential integral of integrand in (17)
has a logarithmic branch point at w=0 or t=t,=
j(qSo—\lJ) and the second term in (17) has a pole
at t=t =j(d>o-\b). The integrand in (17) decays as
t=ioo¥or the slightly lossy medium (Im k < 0),
and the integration path is along the real t axis.
As the branch point ty, or the pole t_ crosses the
integration path, the integral may be analytically
continued into other angular regions by adding the
integral around this branch cut and the pole
contribution. The asymptotic branch cut con-
tribution I} is

Ilb=(n/ja)f exp(—ijkp cosht+w) E, (w) dt
Co

_ —2a exp{—jkp cos(go— )}
N ko sin(go—¢) —2a ’

¢g=1rm—¢| >do

(20)

where C, is the integration path around the
branch cut in Fig. 2a. And the pole contribution

Ilp is

IW:(VZH{/ exp(—ikp cosht)
C

T i) &

exp {jko cos{(p— o)} , 2D

where C_ is the intergation path around the pole
in Fig, 2%. The saddle point contribution Ils may
be obtained by expanding the integrand near the
saddle point t=0 asl4)

Lis= (2/7kp)"? exp {—ij (ko— n/4)}

{2 exp li2a (4o} E. (28 (b= )} +

ué—@] (22)

Similarly the integral I, may be evaluated
asymptotically since W-d does not have any
singularities in the v-plane. Then the scattered
field may be obtained by adding l1s’ llb and Ilp
to the saddle point contribution of I, as
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Fig.2. (a) Integration path Cy in the t-plane.
(b) Integration path Cp in the t-plane.

Hi (o, ¢) =(2/nkp)'* exp {—i(ke—n/4)} Ds (¢, ¢o)
+Ins+ (Iw+1u>) U(‘/'_¢o) ’ (23)

where u(y-¢ o) is the unit step function which
yields one for Y >¢, and zero for Y <¢ and

v exp {ju(do— @} do.

Ds (¢, ¢o)=/:m(W(“' 8- 2(2a—v)

(24)

The asymptotic approximation for the
scattered field in (23) is valid now in all ranges of
¢ provided that the branch point (t=tb) and the
pole (t=tp) are not near the first-order saddle
point (t=0). As ¢ approaches y=| 7-¢|, the branch
point and pole approach the saddle point and a
uniform asymptotic evaluation of I, in (17) is
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needed for Hj in (12). where
Definin
8 ¢ = ¢ (29)
=(a/j7r)/ exp(—jkp cosht+W)Y,(w)dt, y=texp(—jn/4) {2(1—cos¢ )} 7, ¢ 2 0 (30)
(k= 1. 2, 3) (25) Q — 7(kp) 12 (31)
where Y,=-1n(w/2a), Y,=E;(w) + In (w/2a) Go () =+exp(in/d) v/, & ~.0 32)
and Yjz=exp(-w)fw, then I,=J+J, + J3. The <
uniform asymptotic approximation of the in- G(¢f)=7y/sing/ (33)

tergal J, may easily be obtained since its
integrand has no singularities, and that of the
integral J3 may also be obtained!4!. But the
integral J; needs more attention and a new
variable z=t+j(®o -¥/) may be introduced such that

ja w4+ fO0o—P)
_]‘=7/ exp {—jke cosh(z—j(go—¢) ]+

ot Abg- #)

2az} Inz dz. (26)

For the asymptotically large parameter kp, the
uniform asymptotic approximation may be
obtained from the following relationship [9].

l”J . >+ A8y )
! =£m -a—r 1o exp {—jke cosh(z—
et O ¥
i(¢o—¢))+2a2}2" dz @27

where the integral in (27) may be expressed in
terms of the parabolic cylinder function Dr'
Hence the uniform approximation for H; may be
obtained by adding the first term in (23) to I, as

H; =(2/ nkp)"? exp {—jkp—n/4)}
{Ds(¢, o) —a exp(j2a¢’) (E, G2a¢/)+

In(i2a¢/ )]} + j exp(—jko cos¢’)
2

1- G(¢)

W2 (0) + ———— W{' (0)

ja_exp(—ikp cos¢’)[ 4
+ x ln( (ko) *sing/ )
G(¢) oWE(0)
(kp)'? or

G )
T pAWE (@) +

[a)m

4

=g

V%) —S(¢) ln(—i¢'/(Q)]

ing/
WP L oS WL @) ]
“(28)

ke koy or

(957)

S(¢f) =+exp(—jn/dtitad ), & zo (34)

WP (z2)= @2nr)'* exp(nr/2+2*/4)D:(Gz) (35)

One may show that the uniform asymptotic result
in (28) is reduced into the asymptotic result in
(23) as Iq)o-tlll increases.

IV. Ray Optical Interpretation

The first two terms in (23) represent the edge
diffracted field whose diffraction coefficient is
D¢ plus exp(§2a(go-y)) + [-2¢,-¥)17! in (22).
Calculated values of the edge diffraction are
shown in Fig. 3 for the backscattering for different
values of the inverse proportionality constant of
inversely varing resistivity, a‘=a/2m. Since the
results are symmetrical about the resistive half
plane, only the range 0 < ¢ < 180 degrees is
included. Our results are in agreement with
physical reasoning. As the inverse proportionality
of resistivity a’ decreases, the edge diffraction
coefficient is shown to approach that of a con-
ducting half plane.

The third term in (23) from the branch cut and
pole contributions may be interpreted as the
geometric optics term, It repersents the reflected
wave in the reflection region, while the trans-
mitted wave in the shadow region may be obtained
by adding the incident wave to this term. The
reflection and transmission coefficients I" and T
may be obtained as

_ ke sin(¢+9)
" Zatke sin(¢+ o) (362)
T= Za (36b)

2a—kpo sin(¢+4,)

The coefficients in (36) are constant along the
rays, respectively, and are the same as those of



6
10
sf
-
i ==~ Conducting
1k hatf plane
osf
(AN =
oot 3060 % T 150 180
¢ =¢.{degrees]
. . ., »
Fig.3. Magnitude of the edge diffraction
coefficient for the backscattering
@=9,).
15
inversely tapered rosistive
half plane (d'z07)
‘ -
uniform resistive
X4} half plane (R=01)
054
Q . .
0 40 80 120 160
@[degrees)

Fig.4. Magnitude of the scattered field Hi
(¢, = %0°, p=10 ).

the uniform resistive half plane if the local resistiv-
ity, where the ray originates, is equal to that of
the uniform resistive plane,

Through the uniform asymptotic expression in
(28), typical amplitudes of the scattered fields
may be calculated as in Fig. 4 for the incident
angle 90 degrees, 0’=0.1 and p=10 wavelengths.
And non-uniform results for a uniform resistive
half plane (R=0.1) are also shown[10]. As for
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the uniform resistive half plane, the scattered
fields consist of the reflected (or transmitted) and
edge diffracted fields. The amplitude of the
interference fringes is smaller, which means that
the diffracted field is also smaller, than that for
the uniform resistive one. The peak of the
interference fringe occurring last near ¢=75° for
the inversely tapered resistive half plane is shifted
toward 90° in the uniform resistive half plane.
For the angle larger than the reflection region
(90° in Fig4) only the edge diffraction con-
tributes, and its amplitude decreases monoton-
ically to zero as in Fig, 3.
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