• Title/Summary/Keyword: PlaneWave

Search Result 886, Processing Time 0.022 seconds

Wave Resistance of a Ship at Low Froude Numbers (비 Froude수에 있어서 선체의 조파저항)

  • 김인철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.17 no.2
    • /
    • pp.109-113
    • /
    • 1981
  • Most existing theories on ship waves and wave resistance are based on the perturbation of the flow field by a small pararr.eter which specifies the slenderness of the ship hull. Since however, ship hulls in practice are neither so slender nor thin enough to secure the validity of the linearized theory, the agreen:ent between the theoretical prediction and the experimental result is not generally satisfactory. The author pointed out that the contribution by the non-linear term in the free surface condition can be represented by sorr.e source distribution over the still water plane. This paper leads to a forrr.ula for the wave resistance of not slender ships at low Froude nurr.bers. and deals with the asynptotic expression. As a nurr.erical example, the wave resistance of Wigley model is calculated, and the result is compared with experimental values. It is concluded that the wave resistance coefficient varies in the rate of Fn6 at low speed limit in general. A comparison with the result derived from the linearized free surface condition shows that the non-linearity of the free surface is irr portant at low speed.

  • PDF

Combined Wave Reflection and Diffraction near the Upright Breakwater (직립 방파제 주위에서 파랑의 반사 및 회절의 혼합)

  • Shin, Seung Ho;Gug, Seung Gi;Yeom, Won Gi;Lee, Joong Woo
    • Journal of Korean Port Research
    • /
    • v.5 no.1
    • /
    • pp.71-81
    • /
    • 1991
  • This study deals with the analytical and numerical solution for the combined wave reflection and diffraction near the impermeable rigid upright breakwater, subject to the excitation of a plane simple harmonic wave coming from infinity. Three cases are presented : a) the analytical solution near a thin semi-infinite breakwater, b) the analytical solution near the semi-infinite breakwaters of arbitrary edge angles, $30^{\circ},\;45^{\circ},\;and\;90^{\circ}$, c) the numerical solution near a detached thin breakwater the results are presented in amplification factor and wave height diagrams. Moreover, the amplification factors near the structure(2 wavelength before and behind the structure) are compared for the given cases. A finite difference technique for the numerical solution was applied to the integral equation obtained for the wave potential.

  • PDF

Resonant Transmission through Slits in a Cavity inside a Thin Conducting Plane

  • Lee, Jong-Ig;Cho, Young-Ki
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.127-131
    • /
    • 2010
  • In this paper, the problem of electromagnetic transmission via slits in a cavity inside a conducting screen of finite thickness has been considered in the case that the transverse electric(to the slit axis) polarized plane wave is incident on a slit. The problem is solved numerically by the method of moments and the results are compared with those obtained from an equivalent circuit suitable for a case in which the slit width is infinite and the structure is modified to the two partially overlapped conducting planes. It is observed that when the cavity is resonated, the effective slit width reaches its maximum value of $1/\pi$ wavelengths, irrespective of the actual slit width and the incidence angle. When the thickness of the conducting plane is much smaller than the wavelength, the numerical results for the effective slit width(or transmission width) agree well with those obtained from the equivalent circuit, even though the slit is as narrow as the thickness of the conducting plane.

Center-of-Gravity Effect on Supersonic Separation from the Mother Plane (무게중심 변화에 따른 초음속 공중발사 로켓의 모선분리 연구)

  • Ji, Young-Moo;Lee, Jae-Woo;Byun, Yung-Hwan;Park, Jung-Sang
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.423-426
    • /
    • 2006
  • An analysis is made of flow and rocket motion during a supersonic separation stage of air-launching rocket(ALR) from the mother plane. Three-dimensional compressible Navier-Stokes equations is numerically solved to analyze the steady/unsteady flow field around the rocket which is being separated from the mother plane configuration(F-4E Phantom). The simulation results clearly demonstrate the effect of shock-expansion wave interaction between the rocket and the mother plane. To predict the behavior of the ALR according to the change of the C.G., three cases of numerical analysis are performed. As a result, a design-guideline of supersonic air-launching rocket for the safe separation is proposed.

  • PDF

A Study on the Characteristics of Wide Band Matching Connector in Round Coaxial Lines (원형 동축 선로에서 광대역 매칭 커넥터의 특성 연구)

  • Kim, Byeong-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.152-157
    • /
    • 2012
  • In this paper, smoothing plane connector have been proposed as the vehicle connector for the wireless access in vehicular environments (5.925GHz) communication. This smoothing plane connector is designed by considering the properties of critical parameter like smoothing distance of start to end point of contact area. The design simulation and results can be used to determine the most suitable smoothing plane wire dimensions for vehicle communication connector. The optimized WAVE connector inserted the smoothing plane wire has insertion loss less than-0.17dB at 5.925GHz. It provides 20% of insertion loss with good performance. Therefore, the simulated results can be effectively used for optimum design of high frequency connector for vehicle communication.

Aerodynamic control capability of a wing-flap in hypersonic, rarefied regime

  • Zuppardi, Gennaro
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.45-56
    • /
    • 2015
  • The attitude aerodynamic control is an important subject in the design of an aerospace plane. Usually, at high altitudes, this control is fulfilled by thrusters so that the implementation of an aerodynamic control of the vehicle has the advantage of reducing the amount of thrusters fuel to be loaded on board. In the present paper, the efficiency of a wing-flap has been evaluated considering a NACA 0010 airfoil with a trailing edge flap of length equal to 35% of the chord. Computational tests have been carried out in hypersonic, rarefied flow by a direct simulation Monte Carlo code at the altitudes of 65 and 85 km, in the range of angle of attack 0-40 deg. and with flap deflection equal to 0, 15 and 30 deg.. Effects of the flap deflection have been quantified by the variations of the aerodynamic force and of the longitudinal moment. The shock wave-boundary layer interaction and the shock wave-shock wave interaction have been also considered. A possible interaction of the leading edge shock wave and of the shock wave arising from the vertex of the convex corner, produced on the lower surface of the airfoil when the flap is deflected, generates a shock wave whose intensity is stronger than those of the two interacting shock waves. This produces a consistent increment of pressure and heat flux on the lower surface of the flap, where a thermal protection system is required.

Wave Exciting Forces Acting on Ships in Following Seas (추파중(追波中)에서 항행(航行)하는 선체(船體)에 작용(作用)하는 파강제력(波强制力)에 관(關)한 연구(硏究))

  • Kyoung-Ho,Son;Jin-Ahn,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.3
    • /
    • pp.27-34
    • /
    • 1984
  • When a ship is travelling in following seas, the encounter frequency is reduced to be very low. In that case broaching phenomenon is most likely to occur, and it may be due to wave exciting forces acting on ships. It is thought that the wave exciting forces acting on ships in following seas almost consist of two components. One is hydrostatic force due to Froude-Krylov hypothesis, and the other is hydrodynamic lift force due to orbital motion of water particles below the wave surface. In the present paper, the emphasis is laid upon wave exciting sway force, yaw moment and roll moment acting on ships in following seas. The authers take the case that the component of ship speed in the direction of wave propagation is equal to the wave celerity, i.e., the encounter frequency is zero. Hydrostatic force components are calculated by line integral method on Lewis form plane, and hydrodynamic lift components are calculated by lifting surface theory. Furthermore captive model tests are carried out in regular following waves generated by means of a wave making board. Through the comparison between calculated and measured values, it is confirmed that the wave exciting forces acting on ships in following seas can be predicted in terms of present method to a certain extent.

  • PDF

Laboratory study of $CO_2$ migration in water-saturated anisotropic sandstone, based on P-wave velocity imaging (P-파 속도 영상화에 근거한 물로 포화된 이방성 사암에서의 $CO_2$ 이동에 관한 실험 연구)

  • Xue, Ziqiu;Lei, Xinglin
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.10-18
    • /
    • 2006
  • We measured the changes in P-wave velocity that occur when injecting $CO_2$ in gaseous, liquid, and supercritical phases into water-saturated anisotropic sandstones. P-wave velocities were measured in two cylindrical samples of Tako Sandstone, drilled along directions normal and parallel to the bedding plane, using a piezo-electric transducer array system. The velocity changes caused by $CO_2$ injection are typically -6% on average, with maximum values about -16% for the case of supercritical $CO_2$ injection. P-wave velocity tomograms obtained by the differential arrival-time method clearly show that $CO_2$ migration behaviour is more complex when $CO_2$ flows normal to the bedding plane than when it flows parallel to bedding. We also found that the differences in P-wave velocity images were associated both with the $CO_2$ phases and with heterogeneity of pore distribution in the rocks. Seismic images showed that the highest velocity reduction occurred for supercritical $CO_2$ injection, compared with gaseous or liquid $CO_$ injection. This result may justify the use of the seismic method for $CO_2$ monitoring in geological sequestration.

Analysis of the Periodic Microstrip Phased Array Antenna (주기적 마이크로스트립 위상 배열의 특성 해석)

  • 조영수;김동현이상설
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.335-338
    • /
    • 1998
  • This paper presents calculated results for the infinite phased arrays of the probe-fed rectagualr microstrip patches. A numerical model that is based on a rigorous Green's function and galerkin solutionsis is described. In an arbitrary scan plane, the input impedance and the input reflection coefficient versus the scand angle are calculated. The effects of substrate parameters on the phased arry antenna are considered. The scan blindness phenomenon due to the surface wave is observed and the input impedance bandwidth in the arbitrary scan plane is calculated.

  • PDF

Frequency-Variant Power and Ground Plane Model for Electronic Package (패키지의 주파수 의존형 파워 및 그라운드 평판 모델)

  • 이동훈;어영선
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.385-388
    • /
    • 1999
  • A new frequency-variant equivalent circuit model of power/ground plane is presented. The equivalent circuit is modeled with grid cells. The circuit parameters of each cell were extracted by using Fasthenry. To verify the developed circuit model, its s-parameters are compared with the measured s-parameters 〔2〕 and the full-wave simulation-based s-parameters. Consequently, it is shown that our frequency-variant equivalent circuit model can accurately predict imperfect ground effects under the high frequency operation of electronic package.

  • PDF