• 제목/요약/키워드: Plane strain test

Search Result 203, Processing Time 0.031 seconds

Punching Fracture Experiments and Simulations of Unstiffened and Stiffened Panels for Ships and Offshore Structures

  • Park, Sung-Ju;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.155-166
    • /
    • 2020
  • Ductile fracture prediction is critical for the reasonable damage extent assessment of ships and offshore structures subjected to accidental loads, such as ship collisions and groundings. A fracture model combining the Hosford-Coulomb ductile fracture model with the domain of solid-to-shell equivalence model (HC-SDDE), was used in fracture simulations based on shell elements for the punching fracture experiments of unstiffened and stiffened panels. The flow stress and ductile fracture characteristics of JIS G3131 SPHC steel were identified through tension tests for flat bar, notched tension bar, central hole tension bar, plane strain tension bar, and pure shear bar specimens. Punching fracture tests for unstiffened and stiffened panels are conducted to validate the presented HC-DSSE model. The calibrated fracture model is implemented in a user-defined material subroutine. The force-indentation curves and final damage extents obtained from the simulations are compared with experimental results. The HC-DSSE fracture model provides reasonable estimations in terms of force-indentation paths and residual damage extents.

A Realistic Model for Concrete Subjected to Dynamic Tensile Loading (동적(動的) 인장하중(引張荷重)을 받는 콘크리트의 실제적(實際的)인 모델)

  • Oh, Byung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.59-66
    • /
    • 1985
  • Presented is a nonlinear constitutive theory which can model the behavior of concrete under dynamic tensile loads. The microcrack plane theory is introduced to describe the static tensile behavior of concrete. The affinity transformation is then employed to include the effects of strain rate due to the dynamic tensile loads. The comparisons are made with the dynamic tensile test data available in the literature. An equation is proposed to predict the strength gain due to the dynamic tensile loads. The theory allows more realistic dynamic finite element analysis of concrete structures.

  • PDF

Formability of Aluminum 5182-Polypropylene Sandwich Panel for Automotive Application (자동차용 알루미늄 5185-폴리프로필렌 샌드위치 판재의 성형성)

  • Kim, Kee-Joo;Jeong, Hyo-Tae;Sohn, Il-Seon;Kim, Cheol-Woong;Kim, Joong-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.175-181
    • /
    • 2007
  • The objective of this study was to develop formability evaluation techniques in order to apply aluminum sandwich panel for automotive body parts. For this purpose, newly adopting formability evaluation (using limit dome height and plane strain test) was carried out in order to secure the fundamental data for the measurement of sheet metal forming and the establishment of optimum forming conditions of the aluminum sandwich panel. The results showed that there were good agreements between the old formability evaluation method and the new method which was more simplified than that of old one. From the results of these formability evaluation, the formability of sandwich panel was higher than that of aluminum alloy sheet alone which was the skin component for the sandwich panel. Also, it was found that sandwich panel could reduce the weight and could have the same flexural rigidity simultaneously when it was compared to the automotive steel sheet.

Effect of Specimen Thickness on Fatigue Crack Growth (피로균열진전에 미치는 시편 두께의 영향)

  • 김재훈;김영균;윤인수
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.79-86
    • /
    • 1998
  • The effect of specimen thickness on fatigue crack growth behavior has been carried out by compact tension specimens of thickness of 3mm, 10mm and 25mm for maraging steel and Al 7075-T6. The closure points were determined during the test by means of a clip-gage situated at the notch mouth. Specimen thickness have no apparent influence on the fatigue crack growth rate of maraging steel, but the crack growth rate of 25mm thickness specimen for Al 7075-T6 is faster than that of 3 and 10mm specimens. The difference of crack growth rates can be successfully explained by considering the different stress state of plane strain and plain stress due to the variation of specimen thickness. Also the crack opening ratio of 25mm specimen is greater than those of 3 and 10mm specimens. When a side groove is introduced in a 10mm specimen, the crack growth rate is approximately similar to that of 25mm specimen. The effective thickness expression of $B_e=B_o-(B_o-B_N)^2B_o$ is the most appropriate to evaluate the crack growth rate of side-grooved specimen. Fatigue crack growth rates can be well described by $\Delta K_{eff}$ of the crack closure points in regardless of all thickness and side-grooved specimens.

  • PDF

Mechanical response of rockfills in a simulated true triaxial test: A combined FDEM study

  • Ma, Gang;Chang, Xiao-Lin;Zhou, Wei;Ng, Tang-Tat
    • Geomechanics and Engineering
    • /
    • v.7 no.3
    • /
    • pp.317-333
    • /
    • 2014
  • The study of the mechanical behavior of rockfill materials under three-dimensional loading conditions is a current research focus area. This paper presents a microscale numerical study of rockfill deformation and strength characteristics using the Combined Finite-Discrete Element Method (FDEM). Two features unique to this study are the consideration of irregular particle shapes and particle crushability. A polydisperse assembly of irregular polyhedra was prepared to reproduce the mechanical behavior of rockfill materials subjected to axial compression at a constant mean stress for a range of intermediate principal stress ratios in the interval [0, 1]. The simulation results, including the stress-strain characteristics, relationship between principal strains, and principal deviator strains are discussed. The stress-dilatancy behavior is described using a linear dilatancy equation with its material constants varying with the intermediate principal stress ratio. The failure surface in the principal stress space and its traces in the deviatoric and meridian plane are also presented. The modified Lade-Duncan criterion most closely describes the stress points at failure.

A Comparative Study on the Analytical Methods for Structural Behavior of Cement Concrete Pavement System (시멘트 콘크리트 포장구조계의 구조거동의 해석방법에 관한 비교연구)

  • Lee, Seong Won;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.4
    • /
    • pp.73-82
    • /
    • 1989
  • Various analytical procedures for the structural behavior of concrete pavement system are studied in order to identify a suitable method which will be incorperated in the pavement management system using nondestructive test and mechanistic evaluation. A typical four layered system is adopted and analyzed using 3 dimensional finite elements, plane strain elements, plates with Winkler foundation, and plates with Burmister foundation. Numerical analysis results of various structural analysis procedures are compared and analized based on displacements and stresses. It is concluded, after analysis of merits and demetits of the procedures, that Burmister foundation analysis procedure is the most sui-table procedure for implementation for the analysis of stresses and displacements because of its accuracy and simplicity.

  • PDF

Experimental investigation of masonry walls supported by steel plate-masonry composite beams

  • Jing, Deng-Hu;Chen, Jian-Fei;Amato, Giuseppina;Wu, Ting;Cao, Shuang-Yin
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.709-718
    • /
    • 2018
  • Masonry walls are sometimes removed in buildings to either make new passages or increase the usable space. This may change the loading paths in the structure, and require new beams to transfer the loads which are carried by the masonry walls that are to be removed. One possible method of creating such new beams is to attach steel plates onto part of the existing walls to form a steel plate-masonry composite (SPMC) beam, leading to a new structure with part of the masonry wall supported by a new SPMC beam. This paper presents an experimental investigation into the interaction between the SPMC beam and the masonry wall above. Five SPMC beams supporting a masonry wall were tested to study the influence of parameters including the height-to-span ratio of the masonry wall, height of the beam and thickness of the steel plates. The test results, including failure mode, load-carrying capacity, load-deflection curves and strain distribution, are presented and discussed. It is found that for developing better arching effect in the masonry wall the ratio of the in-plane flexural stiffness of the masonry wall to the flexural stiffness of the SPMC beam must be between 2.8 and 7.1.

Effect of Cyclic Drying-Wetting on Compressive Strength of Decomposed Granite Soils (습윤-건조 반복작용으로 인한 화강풍화토의 압축강도 특성 변화 연구)

  • Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.19-28
    • /
    • 2011
  • This paper presents the results of an investigation into the effect of cyclic wetting-drying on the compressive strength characteristics of decomposed granite soils. A series of plane strain compression (PSC) tests were performed on test specimens with varying fine contents under different wetting-drying cycles to investigate the change in compressive strength under the process of wetting-drying cycles. The effect of wetting-drying cycles on the structural particle rearrangement at a micro-scale level was also examined using scanning electron microscope (SEM) tests. It was shown that the soil containing larger fines showed more significant decrease in compressive strength compared with the soils with less fines. Also found was that the wetting-drying cycle did not have significant effect on the particle arrangement.

A Study on the Volume Change in Unsaturated Clayey Soil (불포화 정성토의 체적변화에 대한 연구)

  • Chang, Pyoung-Wuck;Gil, Sang-Choon
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.5
    • /
    • pp.37-42
    • /
    • 1998
  • This study was performed to evaluate the characteristics of volume change is unsaturated clayed soil. The medium-plastic clay was selected and compacted by 50% of Proctor standard compaction energy at 6% higher moisture content than its OMC. A series of isotropic compression tests and triaxial shear tests were performed. The results of the study are summarized as follows. At each matric suction, when the matric suction was increased, the yield stress was increased and slope of volume change was decreased. The more net mean stress was, the less the quantity of volume change was. In shear test, the volumetric strain was much rapidly changed in large matric than in low matric suctions. But the effect of matric suction to volume change disappeared under high net mean stress. At lower deviator stress the more matric suction was, the higher volume change was. But As the matric suction was increasing, the behavior of the unsaturated clayey soil was similar to that of saturated clayey soil. Volume change in the unsaturated clayey soil can be represented as a unique plane in three-dimensional space, which is the axes of net mean stress, matric suction and void ratio.

  • PDF

The Development and Application of Sheet Metal Forming Technology (박판성형기술의 개발과 적용)

  • 박춘달;이장희;양동열;허훈;정동원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.147-162
    • /
    • 1994
  • Generally, the forming process of sheet metal is very complex and difficult process because of many variables such as tool geometry, material properties and lubrication. In this view point, the numerical analysis of sheet metal forming process is very difficult. High speed computer is used to model complex sheet metal forming process on a reasonable time scale. The design and development of sheet metal parts in the automotive industry and the need for improved sheet forming process and reduced part development cost have led to the use of computer simulation in tool/die design of sheet metal pressing. HMC(Hyundai Mator Company) has invested to develop programs for analysis of sheet metal forming process with connection of Universities. As a result, several programs were developed. Recently, the commercial software, PAM-STAMP of ESI was installed and is being tried to application of it to the real automotive panels. This article reviews the ongoing activities on development and application of analytical modeling of sheet metal forming at HMC.