• 제목/요약/키워드: Plane deformation element

검색결과 253건 처리시간 0.022초

입자 영상 해석을 이용한 고분자 지지체 변형 측정 (Deformation Measurement of Polymer Scaffold Using Particle Image Analysis)

  • 강민제;오상훈;이계한
    • 한국정밀공학회지
    • /
    • 제33권1호
    • /
    • pp.69-75
    • /
    • 2016
  • Polydimethylsiloxane (PDMS) is used as a scaffold for cell culture. Because both the stress and strain acting on the substrate and the hemodynamic environment are important for studying mechano-transduction of cellular function, the traction force of the surface of a substrate has been measured using fluorescence images of particle distribution. In this study, deformation of the cross-sectional plane of a PDMS block was measured by correlating particle image distributions to validate the particle image strain measurement technique. Deformation was induced by a cone indentor and a shearing parallel plate. Measured deformations from particle image distributions were in agreement with the results of a computational structure analysis using the finite-element method. This study demonstrates that the particle image correlation method facilitates measurement of deformation of a polymer scaffold in the cross-sectional plane.

Efficient models for analysis of a multistory structure with flexible wings

  • Moon, Seong-Kwon;Lee, Dong-Guen
    • Structural Engineering and Mechanics
    • /
    • 제13권5호
    • /
    • pp.465-478
    • /
    • 2002
  • This study lays emphasis on the development of efficient analytical models for a multistory structure with wings, including the in-plane deformation of floor slabs. For this purpose, a multistory structure with wings is regarded as the combination of multistory structures with rectangular plan and their junctions. In addition, a multistory structure with a rectangular plan is considered to be an assemblage of two-dimensional frames and floor slabs connecting two adjacent frames at each floor level. This modeling, concept can be easily applied to multistory structures with plans in the shape of L, T, Y, U, H, etc. To represent the in-plane deformation of floor slabs efficiently, a two-dimensional frame and the floor slab connecting two adjacent frames at each floor level are modeled as a stick model with two degrees of freedom per floor and a stiff beam with shear deformations, respectively. Three models are used to investigate the effect of in-plane deformation of the floor slab at the junction of wings on the seismic behavior of structures. Based on the comparison of dynamic analysis results obtained using the proposed models and three-dimensional finite element models, it could be concluded that the proposed models can be used as an efficient tool for an approximate analysis of a multistory structure with wings.

In-plane 굽힘 조건에서 감육엘보우 거동에 미치는 내압의 영향 (Effect of Internal Pressure on the Behavior of Wall Thinned Elbow under In-Plane Bending)

  • 김진원;김태순;박치용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.268-273
    • /
    • 2004
  • This study is conducted to clarify the effect of internal pressure on the deformation and collapse behaviors of wall thinned elbow under in-plane bending moment. Thus the nonlinear three-dmensional finite element analyses were performed to obtain the moment-rotation curve of elbow contatining various wall thinning defects located at intrados and extrados under in-plane bending (closing and opening modes) with internal pressure of $0{\sim}15MPa.$ From the results of analysis, the effect of internal of collapse moment of elbow on the global deformation behavior of wall thinned elbow was discussed, and the dependence of collapse moment of elbow on the magnitude of internal pressure was investigated under different loading mode, defect location, and defect shape.

  • PDF

충만 디스크의 면내 진동 해석을 위한 1차원 환상 평판 요소 (A One-dimensional Annular Plate Element for In-plane Vibration Analysis of Full Disks)

  • 곽동희;임정기;김창부
    • 한국소음진동공학회논문집
    • /
    • 제19권12호
    • /
    • pp.1338-1346
    • /
    • 2009
  • We present a one-dimensional annular plate element with which the in-plane vibration of full disks can be analyzed efficiently and accurately by using the FEM. Its elementary mass matrix and stiffness matrix are derived, respectively, from the virtual work by effective forces and the virtual strain energy. The static deformation modes obtained from an integration of the differential equilibrium equations of the annular plate are used as interpolation functions of the one-dimensional annular plate element. The in-plane natural vibration characteristics of a 2-step full disk and a uniform full disk are analysed. Its results are compared with the results obtained by utilizing two-dimensional 8-node quadrilateral plane elements and cyclic symmetry of the disk. And also, by comparing with the theoretical results of previous researchers, the efficiency and accuracy of the presented element are verified.

Strength of connection fixed by TOBs considering out-of-plane tube wall deformation-Part 1: Tests and numerical studies

  • Wulan, Tuoya;Wang, Peijun;Xia, Chengxin;Liu, Xinyu;Liu, Mei;Liu, Fangzhou;Zhao, Ou;Zhang, Lulu
    • Steel and Composite Structures
    • /
    • 제42권1호
    • /
    • pp.49-57
    • /
    • 2022
  • This paper presents a study on the behavior of a bolted T-stub to square tube connection using Thread-fixed One-side Bolts (TOBs) through tests and numerical simulations. It outlines a research work of four connections with focus on the failure modes and strengths of the connection under tensile load. It was observed that the thread anchor failure caused by shear failure of hole threads controlled the final failure of the connection in the tests. Meanwhile, the out-of-plane deformation of tube wall resulted in the contact separation between hole threads and bolt threads, which in turn reduced the shear strength of hole threads. Finite element models (FEMs) allowing for the configuration details of the TOBs fixed connection are then developed and compared with the test results. Subsequently, the failure mechanism of hole threads and stress distribution of each component are analyzed based on FEM results. It was concluded that the ultimate strength of connection was not only concerned with the shear strength of hole threads, but also was influenced by the plastic out-of-plane deformation of tube wall. These studies lay a foundation for the establishment of suitable design methods of this type of connection.

전단변형(剪斷變形)을 고려(考慮)한 평면(平面)뼈대 구조물(構造物)의 기하적(幾何的)인 비선형(非線形) 해석(解析) (Geometric Non-linear Analysis of the Plane Frame Structures including Shear Deformation Effect)

  • 김문영;장승필
    • 대한토목학회논문집
    • /
    • 제10권1호
    • /
    • pp.27-36
    • /
    • 1990
  • 본(本) 논문(論文)에서는 전단변형(剪斷變形) 효과(效果)가 고려되는 평면(平面)뼈대 구조물(構造物)의 기하적(幾何的)인 비선형(非線形) 해석(解析)을 수행하기 위한 두 가지 방법 즉, 유한분절법(有限分節法)과 유한요소법(有限要素法)을 제시한다. 유한분절법(有限分節法)의 경우에는 평형방정식(平衡方程式)을 직접(直接) 적분(積分)하므로써 엄밀(嚴密)한 접선강도(接線剛度) 매트릭스가 유되되는 반면에 유한요소법(有限要素法)의 경우에는 전단변형(剪斷變形)을 고려하는 Hermitian 다항식(多項式)을 형상함수(形狀函數)로 사용하므로써 탄성(彈性) 및 기하적(幾何的)인 강도(剛度)매트릭스가 산정된다. 선택된 예제(例題)들을 해석(解析)한 결과들과 다른 문헌(文獻)의 결과들을 비교, 검토하므로써 본(本) 논문(論文)에서 제시된 이론(理論)의 정당성(正當性)을 입증(立證)한다.

  • PDF

FE modeling for geometrically nonlinear analysis of laminated plates using a new plate theory

  • Bhaskar, Dhiraj P.;Thakur, Ajaykumar G.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권5호
    • /
    • pp.409-426
    • /
    • 2019
  • The aim of the present work is to study the nonlinear behavior of the laminated composite plates under transverse sinusoidal loading using a new inverse trigonometric shear deformation theory, where geometric nonlinearity in the Von-Karman sense is taken into account. In the present theory, in-plane displacements use an inverse trigonometric shape function to account the effect of transverse shear deformation. The theory satisfies the traction free boundary conditions and violates the need of shear correction factor. The governing equations of equilibrium and boundary conditions associated with present theory are obtained by using the principle of minimum potential energy. These governing equations are solved by eight nodded serendipity element having five degree of freedom per node. A square laminated composite plate is considered for the geometrically linear and nonlinear formulation. The numerical results are obtained for central deflections, in-plane stresses and transverse shear stresses. Finite element Codes are developed using MATLAB. The present results are compared with previously published results. It is concluded that the geometrically linear and nonlinear response of laminated composite plates predicted by using the present inverse trigonometric shape function is in excellent agreement with previously published results.

열간분말단조 공정의 열탄소성 유한요소해석 (Thermo-Elasto-Plastic Finite Element Analysis of Powder Hot Forging)

  • 김형섭
    • 한국분말재료학회지
    • /
    • 제4권2호
    • /
    • pp.83-89
    • /
    • 1997
  • A finite element analysis to solve the coupled thermomechanical problem in the plane strain upsetting of the porous metals was performed. The analysis was formulated using the yield function advanced by Lee and kim and developed using the thermo-elasto-plastic time integration procedure. The density and temperature dependent thermal and mechanical properties of porous metals were considered. The internal heat generation by the plastic deformation and the changing thermal boundary conditions corresponding to the geometry were incorporated in the program. The distributions of the stress, strain, pressure, density and temperature were predicted during the free resting period, deformation period and dwelling period of the forging process.

  • PDF

상대 좌표를 이용한 종이류 모델링 기법 (Three-Dimensional Sheet Modeling Using Relative Coordinate)

  • 조희제;배대성
    • 대한기계학회논문집A
    • /
    • 제29권2호
    • /
    • pp.247-252
    • /
    • 2005
  • This research presents a three-dimensional modeling technique for a flexible sheet. A relative coordinate formulation is used to represent the kinematics of the sheet. The three-dimensional flexible sheet is modeled by multi-rigid bodies interconnected by out-of-plane joints and plate force elements. A parent node is designated as a master body and is connected to the ground by a floating joint to cover the rigid motion of the flexible sheet in space. Since the in-plane deformation of a sheet such as a paper and a film is relatively small, compared to out-of-plane deformation, only the out-of-plane deformation is accounted for in this research. The recursive formulation has been adopted to solve the equations of motion efficiently. An example is presented to show the validity of the proposed method.

상대좌표를 이용한 3차원 미디어 이송장치에 대한 실험방법과 Simulation에 대한 연구 (Simulation and Experimental Methods for Three-Dimensional Sheet Media Transport System Using Relative Coordinate)

  • 배대성;조희제
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.573-576
    • /
    • 2005
  • This research presents a three-dimensional modeling technique for a flexible sheet. A relative coordinate formulation is used to represent the kinematics of the sheet. The three-dimensional flexible sheet is modeled by multi-rigid bodies interconnected by out-of-plane joints and plate force elements. A parent node is designated as a master body and is connected to the ground by a floating joint to cover the rigid motion of the flexible sheet in space. Since the in-plane deformation of a sheet such as a paper and a film is relatively small, compared to out-of-plane deformation, only the out-of-plane deformation is accounted for in this research. The recursive formulation has been adopted to solve the equations of motion efficiently. An example is presented to show the validity of the proposed method.

  • PDF