• 제목/요약/키워드: Plane Tip

검색결과 249건 처리시간 0.032초

Direct Velocity Feedback for Tip Vibration Control of a Cantilever Beam with a Non-collocated Sensor and Actuator Pair (비동위치화된 센서와 액추에이터를 이용한 외팔보의 끝단 진동에 대한 직접속도 피드백제어)

  • Lee, Young-Sup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.109-114
    • /
    • 2004
  • This paper presents a theoretical and experimental study of a non-collocated pair of piezopolymer PVDF sensor and piezoceramic PZT actuator, which are bonded on a cantilever beam, in order to suppress unwanted vibration at the tip of the beam. The PZT actuator patch was bonded near the clamped part and the PVDF sensor, which was triangularly shaped, was bonded on the other part of the beam. This is because the triangular PVDF sensor is known that it can detect the tip velocity of a cantilever beam. Because the arrangement of the sensor and actuator pair is not collocated and overlapped each other, the pair can avoid so called 'the in-plane coupling'. The test beam is made of aluminum with the dimension of $200\times20\times2mm$, and the two PZT5H actuators are both $20\times20\times1mm$ and bonded on the beam out-of-phase, and the PVDF sensor is $178mm\times6mm\times52{\mu}m$. Before control, the sensor-actuator frequency response function is confirmed to have a nice phase response without accumulation in a reasonable frequency range of up to 5000 Hz. Both the DVFB and displacement feedback strategies made the error signal from the tip velocity (or displacement) sensor is transmitted to a power amplifier to operate the PZT actuator (secondary source). Both the control methods attenuate the magnitude of the first two resonances in the error spectrum of about 6-7 dB.

  • PDF

A Comparison of the Crack Plane Equilibrium Model for Elastic-Plastic Fracture Analysis with the Irwin's Plastic Zone Corrected LEFM (탄소성 파괴해석을 위한 크랙 평면 평형모형과 항복 선형 파괴역학과의 비교에 관한 연구)

  • Lee, Kyu-Yong;Smith, F.W.
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • 제20권1호
    • /
    • pp.30-36
    • /
    • 1984
  • It is well known that the application of linear elastic fracture mechanics is inadequate to solve the large deformation fracture failures which occurr in ductile manner because of the large scale yielding due to the severe stress concentration in the region adjacent to the crack tip. The authors have been evolved a fracture model, the crack plane equilibrium model, for this kinds of elastic-plastic fracture problems in the previous report. In this report, the crack plane equilibrium model was compared with the Irwin's plastic zone corrected linear elastic fracture mechanics through theoretical comparisons and experimental results to examine the validity of the crack plane equilibrium model as an available tool for nonlinear fracture analysis. Through this study, the main results were reached as follows; Irwin's plastic zone corrected linear elastic fracture mechanics could be applicable only for small scale yielding problems as expected while the crack plane equilibrium model valid as a fracture model for large deformation fracture failure. However, the followings should be considered for the more precise evaluations of CPE model; 1) It is necessary to test more specimens which contain small cracks in the range of 2a/W<0.1. 2) It is important to detect the crack initiation point during the fracture test for determining an accurate fracture load. 3) Effects of specimen thickness in the fracture process zone should be examined.

  • PDF

An Experimental Study on the Stress Behavior of Coped Stringers in Steel Railway Bridge - I : the Reason Why Crack Occurs (철도교 세로보 절취부에서의 응력거동에 관한 실험적 연구 - I : 균열 발생원인)

  • Li, Guang Ri;Park, Young Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제29권4A호
    • /
    • pp.299-305
    • /
    • 2009
  • In this study, in order to research the causes lead to fatigue crack in the coped stringer of a steel railway bridge, we take the steel railway bridge which actually occurs fatigue crack as a research object and manufacture the full size of crossbeam-stringer and floor system model to perform the experimental test. The results indicates that, the fatigue crack in the top of coped area of stringers is caused by the reciprocal action of the in plane stress in the tip of coped area of web by the negative moment occurred in the end of the stringers. While the fatigue crack in the bottom of coped area of stringers is due to the plane stress caused by the out-plane deformation relative to the bottom of coped area of web of the fixed end in the stringers.

Effect of Additive Ammonium Hydroxide on ZnO Particle Properties Synthesized by Facile Glycol Process

  • Phimmavong, Kongsy;Hong, Seok-Hyoung;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • 제31권9호
    • /
    • pp.481-487
    • /
    • 2021
  • ZnO particles are successfully synthesized at 150 ℃ for 30 min using zinc acetate as the Zn source and 1,4-butanediol as solvent using a relatively facile and convenient glycol process. The effect of ammonium hydroxide amounts on the growth behavior and the morphological evolution of ZnO particles are investigated. The prepared ZnO nanoparticle with hexagonal structure exhibits a quasi-spherical shape with an average crystallite size of approximately 30 nm. It is also demonstrated that the morphology of ZnO particles can be controlled by 1,4-butanediol with an additive of ammonium hydroxide. The morphologies of ZnO particles are changed sequentially from a quasi-spherical shape to a rod-like shape and a hexagonal rod shape with a truncated pyramidal tip, exhibiting preferential growth along the [001] direction with increasing ammonium hydroxide amounts. It is demonstrated that much higher OH- amounts can produce a nano-tip shape grown along the [001] direction at the corners and center of the (001) top polar plane, and a flat hexagonal symmetry shape of the bottom polar plane on ZnO hexagonal prisms. The results indicate that the presence of NH4+ and OH- ions in the solution greatly affects the growth behaviors of ZnO particles. A sharp near-band-edge (NBE) emission peak centered at 383 nm in the UV region and a weak broad peak in the visible region between 450 nm and 700 nm are shown in the PL spectra of the ZnO synthesized using the glycol process, regardless of adding ammonium hydroxide. Although the broad peak of the deep-level-emission (DLE) increases with the addition of ammonium hydroxide, it is suggested that the prominent NBE emission peaks indicate that ZnO nanoparticles with good crystallization are obtained under these conditions.

Soft tissue changes of upper lip and nose following posterosuperior rotation of the maxilla by Le Fort I osteotomy (Le Fort I 골절단술을 통한 상악의 후상방 회전에 따른 상순과 비부의 연조직 변화)

  • Kwon, Young-Wook;Pyo, Sung-Woon;Lee, Won;Park, Je-Uk
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제37권6호
    • /
    • pp.457-463
    • /
    • 2011
  • Introduction: This study evaluate the soft tissue changes to the upper lip and nose after Le Fort I maxillary posterosuperior rotational movement. Materials and Methods: Twenty Skeletal class III patients, who had undergone bimaxillary surgery with a maxillary Le Fort I osteotomy and bilateral sagittal split ramus osteotomy, were included in the study. The surgical plan for maxilla was posterosuperior rotational movement, with the rotation center in the anterior nasal spine (ANS) of maxilla. Soft and hard tissue changes were measured by evaluating the lateral cephalograms obtained prior to surgery and at least 6 months after surgery. For cephalometric analysis, four hard tissue landmarks ANS, posterior nasal spine [PNS], A point, U1 tip), and five soft tissue landmarks (pronasale [Pn], subnasale [Sn], A' Point, upper lip [UL], stomion superius [StmS]) were marked. A paired t test, Pearson's correlation analysis and linear regression analysis were used to evaluate the soft and hard tissue changes and assess the correlation. A P value <0.05 was considered significant. Results: The U1 tip moved $2.52{\pm}1.54$ mm posteriorly in the horizontal plane (P<0.05). Among the soft tissue landmarks, Pn moved $0.97{\pm}1.1$ mm downward (P<0.05), UL moved $1.98{\pm}1.58$ mm posteriorly (P<0.05) and $1.18{\pm}1.85$ mm inferiorly (P<0.05), and StmS moved $1.68{\pm}1.48$ mm posteriorly (P<0.05) and $1.06{\pm}1.29$ mm inferiorly (P<0.05). The ratios of horizontal soft tissue movement to the hard tissue were 1:0.47 for the A point and A' point, and 1:0.74 for the U1 tip and UL. Vertically, the movement ratio between the A point and A' point was 1:0.38, between U1 tip and UL was 1:0.83, and between U1 tip and StmS was 1:0.79. Conclusion: Posterosuperior rotational movement of the maxilla in Le Fort I osteotomy results in posterior and inferior movement of UL. In addition, nasolabial angle was increased. Nasal tip and base of the nose showed a tendency to move downward and showed significant horizontal movement. The soft tissue changes in the upper lip and nasal area are believed to be induced by posterior movement at the UL area.

A Study on Accuracy of J-Resistance Curves Measured with Curved Compact Tension Specimen of Zr-2.5Nb Pressure Tube (Zr-2.5Nb 압력관의 휘어진 CT시편으로 측정한 J 저항곡선의 정확도에 관한 연구)

  • Yoon, Kee-Bong;Park, Tae-Gyu;Kim, Young-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제27권11호
    • /
    • pp.1986-1996
    • /
    • 2003
  • Methodology based on the elastic-plastic fracture mechanics has been widely accepted in predicting the critical crack length(CCL) of pressure tubes of CANDU nuclear plants. A conservative estimate of CCL is obtained by employing the J-resistance curves measured with the specimens satisfying plane strain condition as suggested in the ASTM standard. Due to limited thickness of the pressure tubes the curved compact tension(CT) specimens taken out from tile pressure tube have been used in obtaining J-resistance curves. The curved CT specimen inevitably introduce slant fatigue crack during precracking. Hence, effect of specimen geometry and slant crack on J-resistance curve should be explored. In this study, the difference of J integral values between the standard CT specimens satisfying plane strain condition and the nonstandard curved CT with limited thickness (4.2mm) is estimated using finite element analysis. The fracture resistance curves of Zr-2.5Nb obtained previously by other authors are critically discussed. Various finite element analysis were conducted such as 2D analysis under plane stress and plane strain conditions and 3D analysis for flat CT, curved CT with straight crack and curved CT with slant crack front. J-integral values were determined by local contour integration near the crack tip, which was considered as accurate J-values. J value was also determined from the load versus load line displacement curve and the J estimation equation in the ASTM standard. Discrepancies between the two values were shown and suggestion was made for obtaining accurate J values from the load line displacement curves obtained by the curved CT specimens.

Effects of the long-term use of maxillary protraction facemasks with skeletal anchorage on pharyngeal airway dimensions in growing patients with cleft lip and palate

  • Kim, Jung-Eun;Yim, Sunjin;Choi, Jin-Young;Kim, Sukwha;Kim, Su-Jung;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • 제50권4호
    • /
    • pp.238-248
    • /
    • 2020
  • Objective: To investigate the effects of the long-term use of a maxillary protraction facemask with miniplate (FM-MP) on pharyngeal airway dimensions in growing patients with cleft lip and palate (CLP). Methods: The study included 24 boys with CLP (mean age, 12.2 years; mean duration of FM-MP therapy, 4.9 years), divided into two groups according to the amount of A point advancement to the vertical reference plane (VRP): Group 1, > 4 mm; Group 2, < 2 mm; n = 12/group. After evaluating the skeletodental and airway variables using lateral cephalograms acquired before and after FM-MP therapy, statistical analyses were performed. Results: Group 1 showed greater forward and downward displacements of the posterior maxilla (posterior nasal spine [PNS]-horizontal reference plane [HRP]; PNS-VRP), greater increase in ANB, more forward tongue position (tongue tip-Pt vertical line to Frankfort horizontal plane), and greater increase in the oropharynx (superior posterior airway space [SPAS]; middle airway space [MAS]) and upper nasopharynx (PNS-adenoid2) than did Group 2. While maxillary advancement (A-VRP and PNS-VRP) correlated with increases in SPAS, MAS, and PNS-adenoid2, downward displacement of the PNS (PNS-HRP) correlated with increases in SPAS, MAS, PNS-adenoid1, and PNS-adenoid2, and with a decrease in vertical airway length (VAL). Mandibular forward displacement and decrease in mandibular plane correlated with increases in MAS. Conclusions: FM-MP therapy had positive effects on the oropharyngeal and nasopharyngeal airway spaces without increases in VAL in Group 1 rather than in Group 2. However, further validation using an untreated control group is necessary.

Beam-Type Bend Specimen for Interlaminar Fracture Toughness of Laminated Composite under Mixed-Mode Defmrmations (보 형태의 굽힘시편을 이용한 적층복합재료의 혼합모우드 층간파괴인성 평가)

  • 윤성호;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제13권5호
    • /
    • pp.911-920
    • /
    • 1989
  • It this study, beam-type bend specimen is used to evaluate the interlaminar fracture toughness of laminated composite under mixed-mode deformations. The specimen is loaded under three-point bending and hence produced mixed-mode deformations in the vicinity of the crack tip according to the variation of the thickness ratio on delamination plane. Total energy release rate is obtained by elementary beam theory considering the effect of shear deformation. The partitioning of total value into mode-I and mode-II components is also performed. The mixed-mode interlaminar fracture toughness is evaluated by experiments on specimens with several thickness ratios of delamination plane. As the part of delamination plane is thicker, the effect of shear deformation on total energy release rate is increased. Beam-type bend specimen men may be applied to obtain informations on the mixed-mode interlaminar fracture behavior of laminated composites.

ON CRACK INTERACTION EFFECTS OF IN-PLANE SURFACE CRACKS USING ELASTIC AND ELASTIC-PLASTIC FINITE ELEMENT ANALYSES

  • Kim, Jong-Min;Huh, Nam-Su
    • Nuclear Engineering and Technology
    • /
    • 제42권6호
    • /
    • pp.680-689
    • /
    • 2010
  • The crack-tip stress fields and fracture mechanics assessment parameters for a surface crack, such as the elastic stress intensity factor or the elastic-plastic J-integral, can be affected significantly by the adjacent cracks. Such a crack interaction effect due to multiple cracks can alter the fracture mechanics assessment parameters significantly. There are many factors to be considered, for instance the relative distance between adjacent cracks, the crack shape, and the loading condition, to quantify the crack interaction effect on the fracture mechanics assessment parameters. Thus, the current assessment codes on crack interaction effects (crack combination rules), including ASME Sec. XI, BS7910, British Energy R6 and API 579-1/ASME FFS-1, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates crack interaction effects by evaluating the elastic stress intensity factor and the elastic-plastic J-integral of adjacent in-plane surface cracks in a plate through detailed 3-dimensional elastic and elastic-plastic finite element analyses. The effects on the fracture mechanics assessment parameters of the geometric parameters, the relative distance between two cracks, and the crack shape are investigated systematically. As for the loading condition, an axial tension is considered. Based on the finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks are discussed. The present results can be used to develop more concrete guidance on crack interaction effects for crack shape characterization to evaluate the integrity of defective components.

An Analysis of Flat-Crack in Homogeneous Anisotropic Solids Considering Non-Singular Term (비특이항을 고려한 균질이방성체내 수평균열의 해석)

  • Im, Won-Gyun;Choe, Seung-Ryong;An, Hyeon-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제24권1호
    • /
    • pp.69-78
    • /
    • 2000
  • The one-parameter singular expression for stresses and displacements near a crack tip has been widely thought to be sufficiently accurate over a reasonable re ion for any geometry and loading conditions. In many cases, however subsequent terms of the series expansion are quantitatively significant, and so we now consider the evaluation of such terms and their effect on the predicted crack growth direction. For this purpose the problem of a cracked orthotropic plate subjected to a biaxial load is analysed. It is assumed that the material is ideal homogeneous anisotropic. BY considering the effect of the load applied parallel to the plane of the crack, the distribution of stresses and displacements at the crack tip is reanalyzed. In order to determine values for the angle of initial crack extension we employ the normal stress ratio criterion.