Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.9.481

Effect of Additive Ammonium Hydroxide on ZnO Particle Properties Synthesized by Facile Glycol Process  

Phimmavong, Kongsy (Department of Materials Engineering, Graduate School of PaiChai University)
Hong, Seok-Hyoung (Department of Materials Engineering, Graduate School of PaiChai University)
Song, Jeong-Hwan (Department of Materials Science and Engineering, PaiChai University)
Publication Information
Korean Journal of Materials Research / v.31, no.9, 2021 , pp. 481-487 More about this Journal
Abstract
ZnO particles are successfully synthesized at 150 ℃ for 30 min using zinc acetate as the Zn source and 1,4-butanediol as solvent using a relatively facile and convenient glycol process. The effect of ammonium hydroxide amounts on the growth behavior and the morphological evolution of ZnO particles are investigated. The prepared ZnO nanoparticle with hexagonal structure exhibits a quasi-spherical shape with an average crystallite size of approximately 30 nm. It is also demonstrated that the morphology of ZnO particles can be controlled by 1,4-butanediol with an additive of ammonium hydroxide. The morphologies of ZnO particles are changed sequentially from a quasi-spherical shape to a rod-like shape and a hexagonal rod shape with a truncated pyramidal tip, exhibiting preferential growth along the [001] direction with increasing ammonium hydroxide amounts. It is demonstrated that much higher OH- amounts can produce a nano-tip shape grown along the [001] direction at the corners and center of the (001) top polar plane, and a flat hexagonal symmetry shape of the bottom polar plane on ZnO hexagonal prisms. The results indicate that the presence of NH4+ and OH- ions in the solution greatly affects the growth behaviors of ZnO particles. A sharp near-band-edge (NBE) emission peak centered at 383 nm in the UV region and a weak broad peak in the visible region between 450 nm and 700 nm are shown in the PL spectra of the ZnO synthesized using the glycol process, regardless of adding ammonium hydroxide. Although the broad peak of the deep-level-emission (DLE) increases with the addition of ammonium hydroxide, it is suggested that the prominent NBE emission peaks indicate that ZnO nanoparticles with good crystallization are obtained under these conditions.
Keywords
ZnO; glycol process; 1,4-butanediol; ammonium hydroxide; morphology;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Q. F. Zhou, C. Sharp, J. M. Cannata, K. K. Shung, G. H. Feng and E. S. Kim, Appl. Phys. Lett., 90, 113502 (2007).   DOI
2 J. Wojnarowicz, T. Chudoba and W. Lojkowski, Nanomaterials, 10, 1086 (2020).   DOI
3 K. Vanheusden, W. L. Warren, C. H. Seager, D. K. Tallant, J. A. Voigt and B. E. Gnade, J. Appl. Phys., 79, 7983 (1996).   DOI
4 A. Moezzi, A. M. McDonagh and M. B. Cortie, Chem. Eng. J., 185-186, 1 (2012).   DOI
5 K.-R. Agnieszka and T. Jesionowski, Materials, 7, 2833 (2014).   DOI
6 J. Wang, J. S. Lee, D. Kim and L. Zhu, ACS Appl. Mater. Interfaces, 9, 39971 (2017).   DOI
7 M. L. M. Napi, S. M. Sultan, R. Ismail, K. W. How and M. K. Ahmad, Materials, 12, 2985 (2019).   DOI
8 M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, Science, 292, 1897 (2001).   DOI
9 Z. Y. Fan and J. G. Lu, Appl. Phys. Lett., 86, 032111 (2005).   DOI
10 X. W. Li, P. Sun, T. L. Yang, J. Zhao, Z. Wang, W. Wang, Y. Liu, G. Lu and Y. Du, CrystEngComm, 15, 2949 (2013).   DOI
11 Y. H. Lv, C. S. Pan, X. G. Ma, R. L. Zong, X. J. Bai and Y. F. Zhu, Appl. Catal., B, 138-139, 26 (2013).   DOI
12 L. Wei, X. B Zhang and Z. Zuoya, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 25, 608 (2007).   DOI
13 V. Kumar, N. Singh, V. Kumar, L. P. Purohit, A. Kapoor, O. M. Ntwaeaborwa and H. C. Swart, J. Appl. Phys., 114, 134506 (2013).   DOI
14 Z. L. Wang, J. Phys.: Condens. Matter, 16, R829 (2004).   DOI
15 D. Panda and T. Y. Tseng, J. Mater. Sci., 48, 6849 (2013).   DOI
16 Z. Fan and J. G. Lu, J. Nanosci. Nanotechnol., 5, 1561 (2005).   DOI
17 Y. B. Hahn, Korean J. Chem. Eng., 28, 1797 (2011).   DOI
18 J. Theerthagiri, S. Salla, R. A. Senthil, P. Nithyadharseni, A. Madankumar, P. Arunachalam, T. Maiyalagan and H.-S. Kim, Nanotechnology, 30, 392001 (2019).   DOI
19 B. D. Yao, Y. F. Chan and N. Wang, Appl. Phys. Lett., 81, 757 (2002).   DOI
20 M. A. Borysiewicz, Crystals, 9, 505 (2019).   DOI
21 J. J. Wu and S. C. Liu, Adv. Mater., 14, 215 (2002).   DOI
22 J. Lee, A. J. Easteal, U. Pal and U. Bhattacharyya, Curr. Appl. Phys., 4, 792 (2009).
23 M. A. Mousa, W. A. A. Bayoumy and M. Khairy, Mater. Res. Bull., 48, 4576 (2013).   DOI
24 D. Raoufi, Renew. Energ., 50, 932 (2013).   DOI
25 Y. Fang, Z. Li, S. Xu, D. Han and D. Lu, J. Alloys Compd., 575, 359 (2013).   DOI
26 T. Ipeksac, F. Kaya and C. Kaya, Mater. Lett., 100, 11 (2013).   DOI
27 J. H. Ryu, H. S. Kil, J. H. Song, D. Y. Lim and S. B. Cho, Powder Technol., 221, 228 (2012).   DOI
28 K. Phimmavong, J. H. Song, S. B. Cho and D. Y. Lim, J. Korean Ceram. Soc., 54, 211 (2017).   DOI
29 M. T. Thein, S. Y. Pung, A. Aziz and M. Itoh, J. Exp. Nanosci., 10, 1068 (2015).   DOI
30 B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, 3rd ed., p.167-171, Prentice-Hall Inc., Upper Saddle River, New Jersey, USA (2001).
31 S. Nilavazhagan, D. Anbuselvan, A. Santhanam and N. Chidhambaram, Appl. Phys. A: Mater. Sci. Process., 126, 279 (2020).   DOI
32 C. X. Xu, X. W. Sun, Z. L. Dong and M. B. Yu, Appl. Phys. Lett., 85, 3878 (2004).   DOI
33 Z. R. Tian, J. A. Voigt, J. Liu, B. Mckkenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi and H. Xu, Nat. Mater., 2, 821 (2003)   DOI
34 Y. Peng, Y. Wang, Q. G. Chen, Q. Zhu and A. W. Xu, CrystEngComm, 16, 7906 (2014).   DOI
35 W.-J. Li, E.-W. Shi, W.-Z. Zhong and Z.-W. Yin, J. Cryst. Growth, 203, 186 (1999).   DOI