• Title/Summary/Keyword: Plane Projection

Search Result 207, Processing Time 0.027 seconds

The Resident Space Object Detection Method Based on the Connection between the Fourier Domain Image of the Video Data Difference Frame and the Orbital Velocity Projection

  • Vasilina Baranova;Alexander Spiridonov;Dmitrii Ushakov;Vladimir Saetchnikov
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.159-170
    • /
    • 2024
  • A method for resident space object detection in video stream processing using a set of matched filters has been proposed. Matched filters are constructed based on the connection between the Fourier spectrum shape of the difference frame and the magnitude of the linear velocity projection onto the observation plane. Experimental data were obtained using the mobile optical surveillance system for low-orbit space objects. The detection problem in testing mode was solved for raw video data with intensity signals from three satellites: KORONAS-FOTON, CUSAT 2/FALCON 9, and GENESIS-1. Difference frames of video data with the AQUA satellite pass were used to construct matched filters. The satellites were automatically detected at points where the difference in the value of their linear velocity projection and the reference satellite was close in value. An initial approximation of the satellites slant range vector and position vector has been obtained based on the values of linear velocity projection onto the frame plane. It has been established that the difference in the inclination angle between the detected satellite intensity signal Fourier image and the reference satellite mask corresponds to the difference in the inclinations of these objects. The proposed method allows for detecting and estimating the initial approximation of the slant range and position vector of artificial and natural space objects, such as satellites, debris, and asteroids.

Supporting plane for intelligent robot system (지능 로보트 시스템에 있어서 지면의 이용에 관한 연구)

  • 박경택
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.990-995
    • /
    • 1991
  • The integration of intelligent robots into manufacturing systems should positively impact the product quality and productivity. A new theory of object location and recognition using the supporting plane is presented. The unknown supporting points are determined by image coordinates, known camera parameters, and joint coordinates of the robot manipulators. This is developed by using the geometrical interpretation of perspective projection and the geometrical constraints of industrial environments. This can be applied to solve typical robot vision problems such as determination of position, orientation, and recognition of objects.

  • PDF

Comparison of error estimation methods and adaptivity for plane stress/strain problems

  • Ozakca, Mustafa
    • Structural Engineering and Mechanics
    • /
    • v.15 no.5
    • /
    • pp.579-608
    • /
    • 2003
  • This paper deals with adaptive finite element analysis of linearly elastic structures using different error estimators based on flux projection (or best guess stress values) and residual methods. Presentations are given on a typical h-type adaptive analysis, a mesh refinement scheme and the coupling of adaptive finite element analysis with automatic mesh generation. Details about different error estimators are provided and their performance, reliability and convergence are studied using six node quadratic triangular elements. Several examples are presented to demonstrate the reliability of different error estimators.

Evolution of the Orbital Elements for Geosynchronous Orbit of Communications Satellite, II -North-South Station Keeping- (정지 통신 위성의 궤도에 대한 궤도요소의 진화 II -남북 방향의 궤도 보존-)

  • 최규홍;박재우;김경미
    • Journal of Astronomy and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.25-33
    • /
    • 1987
  • For a geostationary satellite north-south keeping maneuver must control the inclination elements. The effects on the orbit plane of maneuvers and natural perturbations may be represented by a plane plot of Wc versus, Ws, since these inclination elements represent the projection of the major axis and the inclination elements are obtained.

  • PDF

A Study on the Comparision Between Map Projection Methods of TM and Polyhedric (TM 및 다면체 투영법(投影法)의 비교고찰(比較考察))

  • Park, Wei-Keun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.6 no.2 s.12
    • /
    • pp.119-132
    • /
    • 1998
  • Much information on the terrain and the space has been depicted to maps of various form according to the map scale and the application. In Korea the base map system was made by only one projection method(Transvers Mercator projection). This is the reason to study this paper, because I think singular map projection method can't satisfy the various map scales and application. In this paper Meridian Are Length, Parallel Are Length of ellipsoid and the area of ellipsoidal surface-the length, the width and area of the map scale 1/5,000, 1/25,000, 1/5,000, 1/1,000, will be calculated and transformed to the plane length and area by Transvers Mercartor projection and Polyhedrical projection. The projection distortion which came into existence on this occasion was compared and analyzed by this Paper. And Properties on TM and Polyhedrical projection were understood. Lastly this paper intended to present suitable map projections according to the map scales and the purpose of use.

  • PDF

The Optical Design and Simulation Results for LED Stage Lighting System (무대조명용 LED 광학시스템 설계 및 시뮬레이션 결과)

  • Park, Kwang-Woo;Joo, Jae-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.30-36
    • /
    • 2015
  • The principle of an illumination and projection system including LED light sources for a spot type stage lighting system was presented, and its optical system was designed with optimizing parameters by the analytical methods. A dichroic mirror incorporated with an illumination system to optimizing LED source positions and to obtain the compact system. The projection system was optimized with specific constraints such as a chromatic aberration, distortion aberration and angle of incidence angles. Optimized design system has a beam angle from $10^{\circ}$ to $45^{\circ}$, and its illuminance was 4,500lux at distance of 6m on the work plane.

System Design and Camera Calibration of Slit Beam Projection for Maximum Measuring Accuracy (슬릿광 3차원 형상측정에서 측정분해능 최적화를 위한 시스템설계 및 카메라보정)

  • 박현구;김명철;김승우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1182-1191
    • /
    • 1994
  • This paper presents an enhanced method of slit beam projection intended for the rapid measurement of 3-dimensional surface profiles of dies and molds. Special emphasis is given to optimizing the design of optical system so that the measuring accuracy can be maximized by adopting two-plane camera calibration together with sub-pixel image processing techniques. Finally, several measurement examples are discussed to demonstrate that an actual measuring accuracy of $\pm$ 0.2 mm can be achieved over the measuring range of 500 mm{\times}300mm{\times}200mm$.

6 DOF Pose Estimation of Polyhedral Objects Based on Geometric Features in X-ray Images

  • Kim, Jae-Wan;Roh, Young-Jun;Cho, Hyung-S.;Jeon, Hyoung-Jo;Kim, Hyeong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.63.4-63
    • /
    • 2001
  • An x-ray vision can be a unique method to monitor and analyze the motion of mechanical parts in real time which are invisible from outside. Our problem is to identify the pose, i.e. the position and orientation of an object from x-ray projection images. It is assumed here that the x-ray imaging conditions that include the relative coordinates of the x-ray source and the image plane are predetermined and the object geometry is known. In this situation, an x-ray image of an object at a given pose can be estimated computationally by using a priori known x-ray projection image model. It is based on the assumption that a pose of an object can be determined uniquely to a given x-ray projection image. Thus, once we have the numerical model of x-ray imaging process, x-ray image of the known object at any pose could be estimated ...

  • PDF

A simulation study on projection pursuit discriminant analysis (투사지향방법에 의한 판별분석의 모의실험분석)

  • 안윤기;이성석
    • The Korean Journal of Applied Statistics
    • /
    • v.5 no.1
    • /
    • pp.103-111
    • /
    • 1992
  • The projection pursuit method has been gussested as a technique for the analysis of the multivariate data. This method seeks out interesting linear projections of the multivariate data onto a line of a plane to solve the curse or dimensionality. In this paper we developed the discriminant analysis by using the projection method and simulations were used for comparison between this and other existing discriminant analysis methods.

  • PDF

FIRST ORDER HERMITE INTERPOLATION WITH SPHERICAL PYTHAGOREAN-HODOGRAPH CURVES

  • Kim, Gwang-Il;Kong, Jae-Hoon;Lee, Sun-Hong
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.73-86
    • /
    • 2007
  • The general stereographic projection which maps a point on a sphere with arbitrary radius to a point on a plane stereographically and its inverse projection have the pythagorean-hodograph (PH) preserving property in the sense that they map a PH curve to another PH curve. Upon this fact, for given spatial $C^1$ Hermite data, we construct a spatial PH curve on a sphere that is a $C^1$ Hermite interpolant of the given data as follows: First, we solve $C^1$ Hermite interpolation problem for the stereographically projected planar data of the given data in $\mathbb{R}^3$ with planar PH curves expressed in the complex representation. Second, we construct spherical PH curves which are interpolants for the given data in $\mathbb{R}^3$ using the inverse general stereographic projection.