Acknowledgement
This work was supported by the Republic of Belarus' scientific research state programs, "High-tech Technologies and Equipment" and "Digital and space technologies, human, society and state security."
References
- Alton KB, Stepien K, CCD photometry, light curve deconvolution, period analysis and evolutionary status of the HADS variable v524, Acta Astron. 69, 283-304 (2019). https://doi.org/10.32023/0001-5237/69.3.4
- Azimov AM, Tillayev YA, Ehgamberdiev SA, Ilyasov SP, Astronomical seeing at maidanak observatory with differential image motion monitor, J. Astron. Telesc. Instrum. Syst. 8, 047002 (2022). https://doi.org/10.1117/1.JATIS.8.4.047002
- Baranova V, Spiridonov A, Liashkevich S, Saetchnikov V, Video data processing system for ground-based space optical surveillance application, Proceedings of the 2023 IEEE 10th International Workshop on Metrology for AeroSpace, Milan, Italy, 19-21 Jun 2023.
- Baranova V, Spiridonov A, Ushakov D, Kozlov V, Cherny V, et al., Geometric approach to determining the space object orbit altitude using angels-only measurements, Proceedings of the 2024 11th International Workshop on Metrology for AeroSpace, Lublin, Poland, 3-5 Jun 2024.
- Baranova VS, Saechnikov VA, Spiridonov AA, Autonomous streaming space objects detection based on a remote optical system, Dev. Methods Meas. 12, 272-279 (2021). https://doi.org/10.21122/2220-9506-2021-12-4-272-279
- Blake J, Looking out for a sustainable space, Astron. Geophys. 63, 2.14-2.20 (2022). https://doi.org/10.1093/astrogeo/atac022
- Blake JA, Chote P, Pollacco D, Feline W, Privett G, et al., DebrisWatch I: a survey of faint geosynchronous debris, Adv. Space Res. 67, 360-370 (2021). https://doi.org/10.1016/j.asr.2020.08.008
- Boley AC, Byers M, Satellite mega-constellations create risks in low earth orbit, the atmosphere and on Earth, Sci. Rep. 11, 10642 (2021). https://doi.org/10.1038/s41598-021-89909-7
- Chote P, Blake JA, Pollacco D, Precision optical light curves of LEO and GEO objects, in Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS), Maui, HI, 1-4 Sep 2019.
- Chun F, Tippets R, Della-Rose DJ, Daniel P, Kimberlee G, et al., The air force academy's Falcon telescope network: an educational and research network for K-12 and higher education, American Astronomical Society, in AAS Meeting #225, Seattle, WA, 4-8 Jan 2015.
- Cooke BF, Chote P, Pollacco D, West R, Blake JA, et al., Simulated recovery of LEO objects using sCMOS blind stacking, Adv. Space Res. 72, 907-921 (2023). https://doi.org/10.1016/j.asr.2023.05.003
- Danescu RG, Itu R, Muresan MP, Rednic A, Turcu V, SST anywhere: a portable solution for wide field low Earth orbit surveillance, Remote Sens. 14, 1905 (2022). https://doi.org/10.3390/rs14081905
- Diprima F, Santoni F, Piergentili F, Fortunato V, Abbattista C, et al., Efficient and automatic image reduction framework for space debris detection based on GPU technology, Acta Astronaut. 145, 332-341 (2018). https://doi.org/10.1016/j.actaastro.2018.02.009
- Dokkum P, Pasha I, A robust and simple method for filling in masked data in astronomical images, Publ. Astron. Soc. Pacific. 136, 034503 (2024). https://doi.org/10.1088/1538-3873/ad2866
- Gonzalez R, Woods R, Digital Image Processing, 3rd ed. (Prentice-Hall, New York, 2006).
- Guo X, Gao P, Shen M, Yang D, Yu H, et al., Introduction to APOSOS project: 15 cm aperture electro-optical telescopes to track space objects, Adv. Space Res. 65, 1990-2002 (2020). https://doi.org/10.1016/j.asr.2020.01.024
- Hickson P, A fast algorithm for the detection of faint orbital debris tracks in optical images, Adv. Space Res. 62, 3078-3085 (2018). https://doi.org/10.1016/j.asr.2018.08.039
- Hwang H, Park SY, Lee E, Angles-only initial orbit determination of low Earth orbit (LEO) satellites using real observational data, J. Astron. Space Sci. 36, 187-197 (2019). https://doi.org/10.5140/JASS.2019.36.3.187
- Krantz H, Pearce EC, Block A, The steward observatory LEO satellite photometric survey, Publ. Astron. Soc. Pacific. 135, 095003 (2023). https://doi.org/10.1088/1538-3873/acf40c
- Kyono T, Lucas J, Werth M, Calef B, McQuaid I, et al., Machine learning for quality assessment of ground-based optical images of satellites, Opt. Eng. 59, 051403 (2020). https://doi.org/10.1117/1.OE.59.5.051403
- Lei X, Li Z, Du J, Chen J, Sang J, et al., Identification of uncatalogued LEO space objects by a ground-based EO array, Adv. Space Res. 67, 350-359 (2021). https://doi.org/10.1016/j.asr.2020.07.030
- Lei X, Wang K, Zhang P, Pan T, Li H, et al., A geometrical approach to association of space-based very short-arc LEO tracks, Adv. Space Res. 62, 542-553 (2018). https://doi.org/10.1016/j.asr.2018.04.044
- Levesque M, Automatic reacquisition of satellite positions by detecting their expected streaks in astronomical images, Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Hawaii, HI, 1-4 Sep 2009.
- Oniga F, Miron M, Danescu R, Nedevschi S, Automatic recognition of low Earth orbit objects from image sequences, in 2011 IEEE 7th International Conference on Intelligent Computer Communication and Processing, Cluj-Napoca, Romania, 25-27 Aug 2011.
- Park JH, Yim HS, Choi YJ, Jo JH, Moon HK, et al., OWL-NET: a global network of robotic telescopes for satellite observation, Adv. Space Res. 62, 152-163 (2018). https://doi.org/10.1016/j.asr.2018.04.008
- Pastor A, Sanjurjo-Rivo M, Escobar D, Initial orbit determination methods for track-to-track association, Adv. Space Res. 68, 2677-2694 (2021). https://doi.org/10.1016/j.asr.2021.06.042
- Shakun L, Koshkin N, Korobeynikova E, Kozhukhov D, Kozhukhov O, et al., Comparative analysis of global optical observability of satellites in LEO, Adv. Space Res. 67, 1743-1760 (2021). https://doi.org/10.1016/j.asr.2020.12.021
- Spiridonov A, Baranova V, Ushakov D, Saetchnikov V, Kenko Z, et al., University mobile optical surveillance system for lowEarth space object orbit determination, Proceedings of the 2022 IEEE 9th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Pisa, Italy, 27-29 Jun 2022.
- Spiridonov AA, Saetchnikov VA, Ushakov DV, Cherny VE, Kezik AG, Small satellite orbit determination methods based on the Doppler measurements by Belarusian State University ground station, IEEE J. Miniaturization Air Space Syst. 2, 59-66 (2021). https://doi.org/10.1109/JMASS.2020.3047456
- Stark H, Application of Optical Fourier Transforms (Academic Press, Orlando, 1982).
- Sun R, Zhan J, Zhao C, Zhang X, Algorithms and applications for detecting faint space debris in GEO, Acta Astronaut. 110, 9-17 (2015). https://doi.org/10.1016/j.actaastro.2015.01.001
- Suthakar V, Sanvido AA, Qashoa R, Lee RSK, Comparative analysis of resident space object (RSO) detection methods, Sensors. 23, 9668 (2023). https://doi.org/10.3390/s23249668
- Torteeka P, Gao P, Shen M, Guo X, Yang D, et al., Autonomous space target tracking through state estimation techniques via ground-based passive optical telescope, Adv. Space Res. 63, 461-475 (2019). https://doi.org/10.1016/j.asr.2018.09.012
- Vallado DA, McClain W, Fundamentals of Astrodynamics and Applications (Microcosm Press, Torrance, 2013).
- Wijnen TPG, Stuik R, Rodenhuis M, Langbroek M, Wijnja P, Using all-sky optical observations for automated orbit determination and prediction for satellites in low earth orbit, Proceedings of the 1st NEO and Debris Detection Conference, Darmstadt, Germany, 22-24 Jan 2019.
- Wlodarczyk I, Cernis K, Boyle RP, Discovery, orbit and orbital evolution of the distant object (463368) 2012 vu85, Acta Astron. 67, 81 (2017). https://doi.org/10.32023/0001-5237/67.1.6
- Yanagisawa T, Kurosaki H, Oda H, Tagawa M, Ground-based optical observation system for LEO objects, Adv. Space Res. 56, 414-420 (2015). https://doi.org/10.1016/j.asr.2015.01.019