• Title/Summary/Keyword: Plane Material

Search Result 1,379, Processing Time 0.027 seconds

A Cephalometric Study of Lateral Morphologic Features in Adult Cleft Lip and Palate Patients (구순 구개열 환자의 성장후 측모형태에 관한 두부계측방사선학적 연구)

  • Chang, Ic-Jun;Sohn, Woo-Ill;Song, Jae-Chul;Chin, Byung-Rho
    • Journal of Yeungnam Medical Science
    • /
    • v.18 no.1
    • /
    • pp.112-122
    • /
    • 2001
  • Background: Cleft lip and palate deformity have unknown patterns of maxillofacial growth and development. The maxillofacial growth can be affected either by congenital or environmental factors such as infection and trauma. Surgical repair of cleft lip and palate may interfere the subsequent growth and development of maxillofacial region. The purpose of this study is to evaluate the characteristics of maxillofacial growth patterns in adult cleft lip and palate patients. Materials and Methods: The material for this study consisted of 17 adult male patients with cleft lip and palate. Cephalometric tracing and measurements were done by one investigator. The relationship between 17 cleft lip and palate patients and Korean norms were evaluated statistically. Results: There were statistically differences in Na. perpendicular to point A, SNA angle, effective maxillary length, maxillofacial differencial. Wit's appraisal and upper incisor to point A(p < 0.01). Pogonion to Na. perpendicular also statistically differed(p < 0.05). Other measurements didn't statistically differ. Conclusion: It was evident that in adult cleft lip and palate patients, maxilla was retruded and short. Careful cleft lip and palate repair and treatment are recommended for facilitating normal growth of maxilla.

  • PDF

Magnetic and Microwave Absorbing Properties of M-type Hexagonal Ferrites Substituted by Ru-Co(BaFe12-2xRuxCoxO19) (Ru-Co가 치환된 M-형 육방정 페라이트(BaFe12-2xRuxCoxO19)의 자기적 성질 및 전파흡수 특성)

  • Cho, Han-Shin;Kim, Sung-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.4
    • /
    • pp.136-141
    • /
    • 2008
  • In this study, the magnetic(static and high-frequency) and microwave absorbing properties have been investigated in Ru-Co substituted M-hexaferrites($BaFe_{12-2x}Ru_xCo_xO_{19}$). The powders and sintered specimens were prepared by conventional ceramic processing technique. With the calcined powders, the composite specimens were prepared using the silicone rubber as a matrix material. The substitution ratio of Ru-Co to obtain in-plane magnetic anisotropy, thus having the minimum coercivity, is much smaller (about x=0.3) than the previously reported Ti-Co substituted specimen. Owing to this low substitution, the specimen has a large value of saturation magnetization($M_s$=65 emu/g). Ferromagnetic resonance behavior and microwave absorbing frequency band is strongly influnced by the coercvity which can be controlled by Ru-Co substitution ratio. It is found that the M-hexaferrites with planar magnetic anisotropy by doping Ru-Co in both sintered and composite form have superior microwave absorbing properties in GHz frequency range.

Preparation and Characterization of Planar-type Artificial Calamine Powder with a High Aspect Ratio for the Application to Ultraviolet and Blue Band Protection Cosmetics (자외선 및 블루영역 차단 화장품 응용을 위한 박막 판형 인공 칼라민 소재의 합성 및 특성 평가 연구)

  • Lee, Jung-Hwan;Lee, Gun-Sub;Jo, Dong-Hyeon;Hong, Da-Hee;Yu, Jae-Hoon;Gwack, Ji-Yoo;Lee, Hee-Chul
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.3
    • /
    • pp.227-235
    • /
    • 2021
  • In this study, we have prepared pure planar-type ZnO and calamine powder containing both ZnO and Fe2O3 components as a raw material for cosmetics with UV and blue band blocking functions. The planar-type ZnO ceramic powder having a high aspect ratio in the range of 20:1 to 50:1 was synthesized by precipitation method in a zinc acetate and sodium citrate mixed solution with the electrolyte obtained by power generation with a zinc-air battery. The content of Fe2O3 in the artificial calamine ceramic powder could be increased by increasing the amount of iron chloride solution added, and in this case, some of the blue region of visible light and ultraviolet light were remarkably absorbed. When potassium acetate was added, the decomposition of the Zn(OH)42- anion in the solution was promoted to facilitate the growth of ZnO crystal in the form of a barrier wall in the vertical direction on the (0001) plane, which could increase UV absorption by providing more opportunities. By controlling the amount of iron chloride solution and potassium acetate solution added, the composition and shape of the thin film plate-shaped artificial calamine ceramic powder can be optimized, and when applied to cosmetic formulations, the light transmittance of the blue region can be greatly reduced.

The Preconsideration of Kiln for Firing Soft Stoneware in the Yeongnam Province in the Proto-Three Kingdoms Period (영남지방 원삼국시대의 토기가마구조에 대한 예찰)

  • Kim, Jae-cheol
    • Korean Journal of Heritage: History & Science
    • /
    • v.40
    • /
    • pp.35-72
    • /
    • 2007
  • Since three has never been any incidence of having investigated kilns for firing soft stoneware in the proto-three kingdoms period so far, how they structured by reviewing historic literature and material was preconsidered in this study. It is presumed that after both Gimhae Daeseongdong-type and Sacheon Bonggyeri-type kilns for firing earthenware coexist early, through an internal alteration process which is mutually complex and momentous, the floor of plastic room has been flattened or slanted and expanded little by little into the closed-kiln structure. It seems that the structure of kilns for firing soft stoneware was a horizontal combustion type(水平燃燒式) and its plane shape was close to being rectangular in shape unlike that of kilns for firing stoneware found in Honam and Hoseo province in the period of (proto-) three kingdoms. On the other hand, it is likely that the horizontal combustion type structure of kilns for firing stoneware excavated in Samyong-ri, Jincheon preceded the vertical combustion type(垂直燃燒式)that of kilns for firing stonewere found in Sansu-ri. In addition, the term, monumeut for firing earthenware must be changed to kiln for firing earthenware and the terms of Pyeungyo(平窯) and Dyengyo(登窯) can be applied to kilns for firing tiles. Thus, it does not seem likely that the absolute equality that Wajil earthenware(soft stoneware) pottery is Pyeungyo and stoneware pottery is Dyeungyo is applied in all cases.

A case of maxilla implant overdenture using Pekkton telescopic attachment with severe alveolar bone resorption (심한 치조골 소실이 있는 상악 무치악 환자에서 Pekkton telescopic attachment를 이용한 임플란트 피개의치 증례)

  • Park, Ha Eun;Lee, Won Sup;Lee, Cheol Won;Lee, Su Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.2
    • /
    • pp.189-194
    • /
    • 2019
  • It is necessary to set the correct occlusal plane and to distribute the occlusal force uniformly considering the state of the opposing dentition during the prosthetic of the single edentulous patient with severe alveolar bone resorption. Implant supported overdenture is superior to complete denture in terms of maintenance and stability, and limited implants are used in fully edentulous patients with high alveolar bone resorption. Telescopic attachments using a newly introduced material based on poly-aryl-ether-ketone (PAEK) have the advantages of typical telescopic copping, excellent abrasion resistance, and are lighter and more economical than conventional implant overdentures. In this case, we restored maxillary arch with a implant retained overdenture using the telescopic attachment made of Pekktonand the mandible was restored with fixed implant prosthesis. Through these procedures esthetic aspects and functional outcomes were satisfactorily achieved.

Fabrication of complete denture using 3D printing: a case report (3D 프린팅을 이용한 양악 총의치 제작 증례)

  • Lee, Eunsu;Park, Chan;Yun, Kwidug;Lim, Hyun-Pil;Park, Sangwon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.2
    • /
    • pp.202-210
    • /
    • 2022
  • Recently with the advance in digital dentistry, the fabrication of dentures using computer-aided design and computer-aided manufacturing (CAD-CAM) is on the rise. The denture designed through a CAD software can be produced in a 3-dimensional manufacturing process. This process includes a subtractive processing method such as milling and an additive processing method such as 3D printing and in which it can be applied efficiently in more complex structures. In this case, complete dentures were fabricated using Stereolithography (SLA)-based 3D printing to shorten the production time and interval of visits in patient with physical disabilities due to cerebral infarction. For definitive impression, the existing interim denture was digitally replicated and used as an individual tray. The definitive impression obtained with polyvinyl siloxane impression material was including information about the inclination and length of the maxillary anterior teeth, vertical dimension, and centric relation. In addition, facial scan data with interim denture was obtained so that it can be used as a reference in determination of the occlusal plane and in arrangement of artificial teeth during laboratory work. Artificial teeth were arranged through a CAD program, and a gingival festooning was performed. The definitive dentures were printed by SLA-based 3D printer using a FDA-approved liquid photocurable resin. The denture showed adequate retention, support, and stability, and results were satisfied functionally and aesthetically.

Fabrication of complete denture using digital technology in patient with mandibular deviation: a case report (하악 편위 환자에서 디지털 방식을 이용한 총의치 제작 증례)

  • Lee, Eunsu;Park, Juyoung;Park, Chan;Yun, Kwi-Dug;Lim, Hyun-Pil;Park, Sangwon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.1
    • /
    • pp.34-41
    • /
    • 2022
  • Recently, digital technology and computer-aided design/computer-aided manufacturing (CAD/CAM) environment have changed the clinician treatment method in the fabrication of dentures. The denture manufacturing method with CAD/CAM technology simplifies the treatment and laboratory process to reduce the occurrence of errors and provides clinical efficiency and convenience. In this case, complete dentures were fabricated using stereolithography (SLA)-based 3D printing in patient with mandibular deviation. Recording base were produced in a digital model obtained with an intraoral scanner, and after recording a jaw relation in the occlusal rim, a definitive impression was obtained with polyvinyl siloxane impression material. In addition, facial scan data with occlusal rim was obtained so that it can be used as a reference in determination of the occlusal plane and in arrangement of artificial teeth during laboratory work. Artificial teeth were arranged through a CAD program, and a gingival festooning was performed. The definitive dentures were printed by SLA-based 3D printer using a Food and Drug Administration (FDA)-approved liquid photocurable resin. The denture showed adequate retention, support and stability, and results were satisfied functionally and aesthetically.

Research on Physicochemical Properties of Graphene Oxide (GO) and Reduced Graphene Oxide (R-GO) (그래핀 옥사이드(Graphen Oxide, GO)와 환원 그래핀의 (Reduced graphe oxide, R-GO)의 물리화학적 특성 연구)

  • Moo-Sun Kim;Ho-Yong Lee;Sung-Woong Choi
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.167-172
    • /
    • 2023
  • The manufacturing technology of composite material is applicable with filler characteristics maintaining low cost, flexibility, and easy process to develope the various functional composite materials. To realize functional composites, various researches on the high performance of composite materials using graphene as a filler is being actively conducted. In this study, physical and chemical properties were investigated using graphene to improve high functional properties. Graphene oxide (GO) was prepared using graphane nanoplatelet (GNP), and reduced graphene oxide (R-GO) was formed by reducing GO. The physical properties of GO and R-GO were analyzed, and the reliability of the manufactured method was reviewed by comparing that of GNP results. As a result of analysis by Raman spectroscopy, in the case of R-GO, it was confirmed that the intensity of D-peak and G-peak decreased compared to GO, and an increase of 0.08 was observed through the ratio of ID/IG. For the FTIR results, GO and RGO has a repeating C-C and C=C connection structure unlike GNP. GO and R-GO show clear peaks for C-O bond, C=C bond, C=O bond, and O-H bonding. As a result of X-ray diffraction analysis, GNP showed a wide diffraction peak at 25.86° of (002) plane characteristics, whereas GO and R-GO showed peaks corresponding to (001) and (100) planes. It was also found that the interlayer distance of GO increased by about 2.6 times compared to GNP.

A Simulation Study of the Inset-fed 2-patch Microstrip Array Antenna for X-band Applications (X-band 대역용 2-패치 마이크로스트립 인셋 급전 어레이 안테나 시뮬레이션 연구)

  • Nkundwanayo Seth;Gyoo-Soo Chae
    • Advanced Industrial SCIence
    • /
    • v.3 no.2
    • /
    • pp.31-37
    • /
    • 2024
  • This paper presents a single and 2-patch microstrip array antenna operated on a frequency of 10.3GHz(x-band). It outlines the process of designing a microstrip patch array antenna using CST MWS. Initially, a single microstrip antenna was designed, followed by optimization using CST MWS to attain optimal return losses and gain. Subsequently, the design was expanded to create a 2×1 microstrip inset-fed array antenna for the X-band applications. The construction material is Roger RO4350B, with specific dimensions (h=0.79mm, 𝜖r = 3.54). The achieved results include an S11 of -18dB at the resonant frequency (10.3GHz), a gain of 9.82dBi, a bandwidth of 0.165GHz, and a 3-dB beamwidth of 30°, 121° in Az(𝜑=0) and El(𝜑=90) plane, respectively. The future plan involves the fabrication of this array antenna and further expansion to a 4×4 array of microstrip antennas. It is then incorporated on the X-band applications for practical uses.

Two Dimensional Size Effect on the Compressive Strength of Composite Plates Considering Influence of an Anti-buckling Device (좌굴방지장치 영향을 고려한 복합재 적층판의 압축강도에 대한 이차원 크기 효과)

  • ;;C. Soutis
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.23-31
    • /
    • 2002
  • The two dimensional size effect of specimen gauge section ($length{\;}{\times}{\;}width$) was investigated on the compressive behavior of a T300/924 $\textrm{[}45/-45/0/90\textrm{]}_{3s}$, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a $30mm{\;}{\times}{\;}30mm,{\;}50mm{\;}{\times}{\;}50mm,{\;}70mm{\;}{\times}{\;}70mm{\;}and{\;}90mm{\;}{\times}{\;}90mm$ gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.