• Title/Summary/Keyword: Plane Detection

검색결과 310건 처리시간 0.032초

Microcantilever biosensor: sensing platform, surface characterization and multiscale modeling

  • Chen, Chuin-Shan;Kuan, Shu;Chang, Tzu-Hsuan;Chou, Chia-Ching;Chang, Shu-Wei;Huang, Long-Sun
    • Smart Structures and Systems
    • /
    • 제8권1호
    • /
    • pp.17-37
    • /
    • 2011
  • The microcantilever (MCL) sensor is one of the most promising platforms for next-generation label-free biosensing applications. It outperforms conventional label-free detection methods in terms of portability and parallelization. In this paper, an overview of recent advances in our understanding of the coupling between biomolecular interactions and MCL responses is given. A dual compact optical MCL sensing platform was built to enable biosensing experiments both in gas-phase environments and in solutions. The thermal bimorph effect was found to be an effective nanomanipulator for the MCL platform calibration. The study of the alkanethiol self-assembly monolayer (SAM) chain length effect revealed that 1-octanethiol ($C_8H_{17}SH$) induced a larger deflection than that from 1-dodecanethiol ($C_{12}H_{25}SH$) in solutions. Using the clinically relevant biomarker C-reactive protein (CRP), we revealed that the analytical sensitivity of the MCL reached a diagnostic level of $1{\sim}500{\mu}g/ml$ within a 7% coefficient of variation. Using grazing incident x-ray diffractometer (GIXRD) analysis, we found that the gold surface was dominated by the (111) crystalline plane. Moreover, using X-ray photoelectron spectroscopy (XPS) analysis, we confirmed that the Au-S covalent bonds occurred in SAM adsorption whereas CRP molecular bindings occurred in protein analysis. First principles density functional theory (DFT) simulations were also used to examine biomolecular adsorption mechanisms. Multiscale modeling was then developed to connect the interactions at the molecular level with the MCL mechanical response. The alkanethiol SAM chain length effect in air was successfully predicted using the multiscale scheme.

무인전투기의 지대공 미사일에 대한 IR 생존성 분석 (Investigation of IR Survivability of Unmanned Combat Aerial Vehicle against Surface-to-Air Missiles)

  • 이지현;이현진;명노신;최성만;김원철
    • 한국항공우주학회지
    • /
    • 제45권12호
    • /
    • pp.1084-1093
    • /
    • 2017
  • 전장에서 임무를 수행하는 항공기의 생존성이 위협을 받음에 따라 항공기의 생존성을 향상시키기 위한 연구의 필요성이 커지고 있다. 본 연구에서는 항공기 Plume IR 신호에 관련된 무인전투기의 생존성을 분석하였다. 항공기의 생존성을 분석하기 위해 먼저 항공기의 IR 탐지거리인 Lock-on Range와 미사일 격추 범위인 Lethal Envelope 개념을 도입하였다. 또한 수직면 기준 분석을 포함하는 지대공 미사일에 대한 Lethal Envelope를 계산하는 기법을 개발하였다. 계산결과 무인전투기의 Red Zone이 고도 위 방향과 아래 방향의 특성 뿐만 아니라 정량적인 Zone 사이즈에서 상당한 차이가 생김을 확인하였다.

스테레오 카메라로부터 실시간 가상 착용을 위한 발동작 검출 (Capture of Foot Motion for Real-time Virtual Wearing by Stereo Cameras)

  • 정다운;윤용인;최종수
    • 한국멀티미디어학회논문지
    • /
    • 제11권11호
    • /
    • pp.1575-1591
    • /
    • 2008
  • 본 논문에서는 스테레오 카메라로부터 신체 중 발의 3차원 가상 모델을 실시간으로 합성할 수 있도록 동작을 검출하는 새로운 방법을 제안한다. 발에 가상 모델을 같은 위치에 합성하려면 관절의 움직임을 일정하게 추적하는 움직임 검출 과정이 필수적이다. 복잡한 움직임 속에서의 정확한 정합 이 기술이 해결해야 할 가장 중요한 문제이다. 본 논문에서는 두 가지 형태의 마커 그룹을 사용한 동적 정합을 제안한다. 바닥의 평면 정보는 발과 3차원 가상 발 모델의 관계를 조정하고 발의 자세와 위치를 측정한다. 발의 회전은 발등의 중심 골격에 따라 부착한 두 개의 마커(Marker) 그룹을 사용하여 추정했다. 이 논문에서는 제안한 시스템을 직접 구현하고, 다양한 실험을 통해 시스템에 적용된 각 알고리즘의 정확도를 측정했다.

  • PDF

깊이 영상의 평면 검출 기반 3차원 정합 기법을 이용한 상지 부종의 부피 측정 기술 (Volume measurement of limb edema using three dimensional registration method of depth images based on plane detection)

  • 이원희;김광기;정승현
    • 한국멀티미디어학회논문지
    • /
    • 제17권7호
    • /
    • pp.818-828
    • /
    • 2014
  • After emerging of Microsoft Kinect, the interest in three-dimensional (3D) depth image was significantly increased. Depth image data of an object can be converted to 3D coordinates by simple arithmetic calculation and then can be reconstructed as a 3D model on computer. However, because the surface coordinates can be acquired only from the front area facing Kinect, total solid which has a closed surface cannot be reconstructed. In this paper, 3D registration method for multiple Kinects was suggested, in which surface information from each Kinect was simultaneously collected and registered in real time to build 3D total solid. To unify relative coordinate system used by each Kinect, 3D perspective transform was adopted. Also, to detect control points which are necessary to generate transformation matrix, 3D randomized Hough transform was used. Once transform matrices were generated, real time 3D reconstruction of various objects was possible. To verify the usefulness of suggested method, human arms were 3D reconstructed and the volumes of them were measured by using four Kinects. This volume measuring system was developed to monitor the level of lymphedema of patients after cancer treatment and the measurement difference with medical CT was lower than 5%, expected CT reconstruction error.

A Defocus Technique based Depth from Lens Translation using Sequential SVD Factorization

  • Kim, Jong-Il;Ahn, Hyun-Sik;Jeong, Gu-Min;Kim, Do-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.383-388
    • /
    • 2005
  • Depth recovery in robot vision is an essential problem to infer the three dimensional geometry of scenes from a sequence of the two dimensional images. In the past, many studies have been proposed for the depth estimation such as stereopsis, motion parallax and blurring phenomena. Among cues for depth estimation, depth from lens translation is based on shape from motion by using feature points. This approach is derived from the correspondence of feature points detected in images and performs the depth estimation that uses information on the motion of feature points. The approaches using motion vectors suffer from the occlusion or missing part problem, and the image blur is ignored in the feature point detection. This paper presents a novel approach to the defocus technique based depth from lens translation using sequential SVD factorization. Solving such the problems requires modeling of mutual relationship between the light and optics until reaching the image plane. For this mutuality, we first discuss the optical properties of a camera system, because the image blur varies according to camera parameter settings. The camera system accounts for the camera model integrating a thin lens based camera model to explain the light and optical properties and a perspective projection camera model to explain the depth from lens translation. Then, depth from lens translation is proposed to use the feature points detected in edges of the image blur. The feature points contain the depth information derived from an amount of blur of width. The shape and motion can be estimated from the motion of feature points. This method uses the sequential SVD factorization to represent the orthogonal matrices that are singular value decomposition. Some experiments have been performed with a sequence of real and synthetic images comparing the presented method with the depth from lens translation. Experimental results have demonstrated the validity and shown the applicability of the proposed method to the depth estimation.

  • PDF

Development of Parallel Plate Avalanche Counter for heavy ion collision in radioactive ion beam

  • Wei, Xianglun;Guan, Fenhai;Yang, Herun;Wang, Yijie;Zhang, Junwei;Ma, Peng;Diao, Xinyue;Lu, Chengui;Li, Meng;Guan, Yuanfan;Duan, Limin;Hu, Rongjiang;Zhang, Xiuling;Xiao, Zhigang
    • Nuclear Engineering and Technology
    • /
    • 제52권3호
    • /
    • pp.575-580
    • /
    • 2020
  • We have developed a position-sensitive Parallel Plate Avalanche Counter (PPAC) to detect the fission fragments and reconstruct the fission reaction plane in the experiment of studying nuclear equation of state (nEOS) by means of heavy ion collision (HIC). This experiment put forward high requirements for the performances of PPAC, such as the time resolution, efficiency and position resolution. According to these requirements we designed the PPAC with an active area of 240 mm × 280 mm working at low gas pressure. The results show that time resolution could be less than 300 ps. Position resolution is consistent with the theoretical calculation about 1.35 mm. Detection efficiency could be approaching 100% gradually with the voltage increasing in different gas pressures. The performances of PPAC have also been verified in beam experiment. Each set of anode wires can be accurately separated in the position spectrum. In the beam experiment, we also got the back-to-back correlation of fission fragments which is one of the direct signals characterizing binary decay.

자연모사 기반 광대역 새싹 안테나 설계 (Design of a Nature-inspired Wideband Sprout-leaf Antenna)

  • 우동식;배성현
    • 전기전자학회논문지
    • /
    • 제24권2호
    • /
    • pp.536-542
    • /
    • 2020
  • 본 논문에서는 광대역 지향성 방사패턴을 가지는 자연에서 영감을 얻은 새싹 모양 안테나를 제안한다. 모션감지 센서 응용을 위해 넓은 빔폭을 가지는 새싹 모양의 기울어진 방사체를 설계하였다. 확장된 잘려진 접지면을 반사기로 작용하도록 하여 지향성 방사패턴을 가지도록 하였다. 평형 방사체를 급전하기 위하여 우수한 진폭 및 위상 평형도를 가지는 광대역 발룬을 활용하였다. 제안된 안테나는 8.5에서 14.5 GHz의 넓은 주파수 대역폭과 넓은 빔폭을 가졌으며, 방사 효율은 90% 정도이었다. 측정된 이득은 4에서 5dBi이며, 전후방비는 10~20dB이었다. 제안된 안테나는 광대역 넓은 빔폭과 지향성 방사패턴을 요구하는 이미징 센서, 위상 배열 시스템 및 레이더 등에 활용될 수 있음을 보였다.

레이저 스펙클과 1차원 CCD소자를 이용한 물체의 미소변위측정에 관한 연구 (Measurement of Micro-displacement of an Object by Laser Speckle using Linear Array CCD Detection System)

  • 우창헌;민동현;김수용
    • 한국광학회지
    • /
    • 제5권1호
    • /
    • pp.138-143
    • /
    • 1994
  • 거친 표면을 가진 물체의 미소변위를 1차원 CCD소자와 레이저 스펙클(laser speckle) 방법을 이용하여 측정하였다. 거친 표면에서 산란된 레이저 광이 이루는 스펙클 무늬를 물체의 이동 전후에 얻고, 그것의 상호상관함수(cross-correlation)를 계산하여 스펙클 변위를 계산한다. 1차원 CCD소자를 이용하여 물체이동 전후의 스펙클 무늬를 측정하고, 레이저 스펙클 변위값을 386 PC로 인터페이스하여 PC에서 계산한다. 사용한 CCD 소자의 화소 간격은 $15\mu\textrm{m}$이고, 화소의 개수는 1728개이다. 스펙클 변위와 물체의 이동거리와는 비는 레이저 빔의 파면의 곡률에따라 1.03으로부터 5.20까지 변화한다. CCD 픽셀의 간격이 $15\mu\textrm{m}$이므로 물체의 $3\mu\textrm{m}$ 이동을 감지해 낼 수 있다.

  • PDF

A Study of Galactic Molecular Clouds through Multiwavelength Observations

  • 박성준;민경욱;선광일;한원용;이대희
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.68.1-68.1
    • /
    • 2010
  • We focus on two Galactic molecular clouds that are located in wholly different environments and both are observed by FIMS instrument onboard STSAT-1. The Draco cloud is known as a translucent molecular cloud at high Galactic latitude. The FUV spectra show important ionic lines of C IV, Si IV+O IV], Si II* and Al II, indicating the existence of hot and warm interstellar gases in the region. The enhanced C IV emission inside the Draco cloud region is attributable to the turbulent mixing of the interacting cold and warm/hot media, which is supported by the detection of the O III] emission line and the $H{\alpha}$ feature in this region. The Si II* emission covers the remainder of the region outside the Draco cloud, in agreement with previous observations of Galactic halos. Additionally, the H2 fluorescent map is consistent with the morphology of the atomic neutral hydrogen and dust emission of the Draco cloud. In the Aquila Rift region near Galactic plane, FIMS observed that the FUV continuum emission from the core of the Aquila Rift suffers heavy dust extinction. The entire field is divided into three sub-regions that are known as the- "halo," "diffuse," and "star-forming" regions. The "diffuse" and "star-forming" regions show various prominent H2 fluorescent emission lines, while the "halo" region indicates the general ubiquitous characteristics of H2. The CLOUD model and the FUV line ratio are included here to investigate the physical conditions of each sub-region. Finally, the development of an infrared imaging system known as the MIRIS instrument onboard STSAT-3 is briefly introduced. It can be used in WIM studies through $Pa{\alpha}$ observations.

  • PDF

삼면반사체를 이용한 6자유도 미소 변위 측정 (Measurement of Fine 6-DOF Displacement using a 3-facet Mirror)

  • 박원식;조형석;변용규;박노열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.50-50
    • /
    • 2000
  • In this paper, a new measuring system is :proposed which can measure the fine 6-DOF displacement of rigid bodies. Its measurement principle is based on detection of laser beam reflected from a specially fabricated mirror that looks like a triangular pyramid having an equilateral cross-sectional shape. The mirror has three lateral reflective surfaces inclined 45$^{\circ}$ to its bottom surface. We call this mirror 3-facet mirror. The 3-facet mirror is mounted on the object whose 6-DOF displacement is to be measured. The measurement is operated by a laser-based optical system composed of a 3-facet mirror, a laser source, three position-sensitive detectors(PSD). In the sensor system, three PSDs are located at three corner points of a triangular formation, which is an equilateral triangular formation tying parallel to the reference plane. The sensitive areas of three PSDs are oriented toward the center point of the triangular formation. The object whose 6-DOF displacement is to be measured is situated at the center with the 3-facet mirror on its top surface. A laser beam is emitted from the laser source located at the upright position and vertically incident on the top of the 3-fatcet mirror. Since each reflective facet faces toward each PSD, the laser beam is reflected at the 3-facet mirror and splits into three sub-beams, each of which is reflected from the three facets and finally arrives at three PSDs, respectively. Since each PSD is a 2-dimensional sensor, we can acquire the information on the 6-DOF displacement of the 3-facet mirror. From this principle, we can get 6-DOF displacement of any object simply by mounting the 3-facet mirror on the object. In this paper, we model the relationship between the 6-DOF displacement of the object and the outputs of three PSDs. And, a series of simulations are performed to demonstrate the effectiveness of the proposed method. The simulation results show that the proposed sensing system can be an effective means of obtaining 3-dimensional position and orientation of arbitrary objects.

  • PDF