• Title/Summary/Keyword: Plane Detection

Search Result 310, Processing Time 0.026 seconds

Microcantilever biosensor: sensing platform, surface characterization and multiscale modeling

  • Chen, Chuin-Shan;Kuan, Shu;Chang, Tzu-Hsuan;Chou, Chia-Ching;Chang, Shu-Wei;Huang, Long-Sun
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.17-37
    • /
    • 2011
  • The microcantilever (MCL) sensor is one of the most promising platforms for next-generation label-free biosensing applications. It outperforms conventional label-free detection methods in terms of portability and parallelization. In this paper, an overview of recent advances in our understanding of the coupling between biomolecular interactions and MCL responses is given. A dual compact optical MCL sensing platform was built to enable biosensing experiments both in gas-phase environments and in solutions. The thermal bimorph effect was found to be an effective nanomanipulator for the MCL platform calibration. The study of the alkanethiol self-assembly monolayer (SAM) chain length effect revealed that 1-octanethiol ($C_8H_{17}SH$) induced a larger deflection than that from 1-dodecanethiol ($C_{12}H_{25}SH$) in solutions. Using the clinically relevant biomarker C-reactive protein (CRP), we revealed that the analytical sensitivity of the MCL reached a diagnostic level of $1{\sim}500{\mu}g/ml$ within a 7% coefficient of variation. Using grazing incident x-ray diffractometer (GIXRD) analysis, we found that the gold surface was dominated by the (111) crystalline plane. Moreover, using X-ray photoelectron spectroscopy (XPS) analysis, we confirmed that the Au-S covalent bonds occurred in SAM adsorption whereas CRP molecular bindings occurred in protein analysis. First principles density functional theory (DFT) simulations were also used to examine biomolecular adsorption mechanisms. Multiscale modeling was then developed to connect the interactions at the molecular level with the MCL mechanical response. The alkanethiol SAM chain length effect in air was successfully predicted using the multiscale scheme.

Investigation of IR Survivability of Unmanned Combat Aerial Vehicle against Surface-to-Air Missiles (무인전투기의 지대공 미사일에 대한 IR 생존성 분석)

  • Lee, Ji-Hyun;Lee, Hyun-Jin;Myong, Rho-Shin;Choi, Seong-Man;Kim, Won-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.12
    • /
    • pp.1084-1093
    • /
    • 2017
  • As the survivability of an aircraft in the battlefield becomes a critical issue, there is a growing need to improve the survivability of the aircraft. In this study, the survivability of an UCAV associated with plume IR signature was investigated. In order to analyze the survivability of the aircraft, the lock-on range and the lethal envelope, defined as the IR detection distance of the aircraft and the range of shooting down by the missile, respectively, were first introduced. Further, a method to calculate the lethal envelope for the scenario of surface-to-air missiles including the vertical plane was developed. The study confirmed that the red zone of an UCAV shows a substantial difference in the zone size as well as the characteristics in the upward and downward directions.

Capture of Foot Motion for Real-time Virtual Wearing by Stereo Cameras (스테레오 카메라로부터 실시간 가상 착용을 위한 발동작 검출)

  • Jung, Da-Un;Yun, Yong-In;Choi, Jong-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1575-1591
    • /
    • 2008
  • In this paper, we propose a new method detecting foot motion capture in order to overlap in realtime foot's 3D virtual model from stereo cameras. In order to overlap foot's virtual model at the same position of the foot, a process of the foot's joint detection to regularly track the foot's joint motion is necessary, and accurate register both foot's virtual model and user's foot in complicated motion is most important problem in this technology. In this paper, we propose a dynamic registration using two types of marker groups. A plane information of the ground handles the relationship between foot's virtual model and user's foot and obtains foot's pose and location. Foot's rotation is predicted by two attached marker groups according to instep of center framework. Consequently, we had implemented our proposed system and estimated the accuracy of the proposed method using various experiments.

  • PDF

Volume measurement of limb edema using three dimensional registration method of depth images based on plane detection (깊이 영상의 평면 검출 기반 3차원 정합 기법을 이용한 상지 부종의 부피 측정 기술)

  • Lee, Wonhee;Kim, Kwang Gi;Chung, Seung Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.7
    • /
    • pp.818-828
    • /
    • 2014
  • After emerging of Microsoft Kinect, the interest in three-dimensional (3D) depth image was significantly increased. Depth image data of an object can be converted to 3D coordinates by simple arithmetic calculation and then can be reconstructed as a 3D model on computer. However, because the surface coordinates can be acquired only from the front area facing Kinect, total solid which has a closed surface cannot be reconstructed. In this paper, 3D registration method for multiple Kinects was suggested, in which surface information from each Kinect was simultaneously collected and registered in real time to build 3D total solid. To unify relative coordinate system used by each Kinect, 3D perspective transform was adopted. Also, to detect control points which are necessary to generate transformation matrix, 3D randomized Hough transform was used. Once transform matrices were generated, real time 3D reconstruction of various objects was possible. To verify the usefulness of suggested method, human arms were 3D reconstructed and the volumes of them were measured by using four Kinects. This volume measuring system was developed to monitor the level of lymphedema of patients after cancer treatment and the measurement difference with medical CT was lower than 5%, expected CT reconstruction error.

A Defocus Technique based Depth from Lens Translation using Sequential SVD Factorization

  • Kim, Jong-Il;Ahn, Hyun-Sik;Jeong, Gu-Min;Kim, Do-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.383-388
    • /
    • 2005
  • Depth recovery in robot vision is an essential problem to infer the three dimensional geometry of scenes from a sequence of the two dimensional images. In the past, many studies have been proposed for the depth estimation such as stereopsis, motion parallax and blurring phenomena. Among cues for depth estimation, depth from lens translation is based on shape from motion by using feature points. This approach is derived from the correspondence of feature points detected in images and performs the depth estimation that uses information on the motion of feature points. The approaches using motion vectors suffer from the occlusion or missing part problem, and the image blur is ignored in the feature point detection. This paper presents a novel approach to the defocus technique based depth from lens translation using sequential SVD factorization. Solving such the problems requires modeling of mutual relationship between the light and optics until reaching the image plane. For this mutuality, we first discuss the optical properties of a camera system, because the image blur varies according to camera parameter settings. The camera system accounts for the camera model integrating a thin lens based camera model to explain the light and optical properties and a perspective projection camera model to explain the depth from lens translation. Then, depth from lens translation is proposed to use the feature points detected in edges of the image blur. The feature points contain the depth information derived from an amount of blur of width. The shape and motion can be estimated from the motion of feature points. This method uses the sequential SVD factorization to represent the orthogonal matrices that are singular value decomposition. Some experiments have been performed with a sequence of real and synthetic images comparing the presented method with the depth from lens translation. Experimental results have demonstrated the validity and shown the applicability of the proposed method to the depth estimation.

  • PDF

Development of Parallel Plate Avalanche Counter for heavy ion collision in radioactive ion beam

  • Wei, Xianglun;Guan, Fenhai;Yang, Herun;Wang, Yijie;Zhang, Junwei;Ma, Peng;Diao, Xinyue;Lu, Chengui;Li, Meng;Guan, Yuanfan;Duan, Limin;Hu, Rongjiang;Zhang, Xiuling;Xiao, Zhigang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.575-580
    • /
    • 2020
  • We have developed a position-sensitive Parallel Plate Avalanche Counter (PPAC) to detect the fission fragments and reconstruct the fission reaction plane in the experiment of studying nuclear equation of state (nEOS) by means of heavy ion collision (HIC). This experiment put forward high requirements for the performances of PPAC, such as the time resolution, efficiency and position resolution. According to these requirements we designed the PPAC with an active area of 240 mm × 280 mm working at low gas pressure. The results show that time resolution could be less than 300 ps. Position resolution is consistent with the theoretical calculation about 1.35 mm. Detection efficiency could be approaching 100% gradually with the voltage increasing in different gas pressures. The performances of PPAC have also been verified in beam experiment. Each set of anode wires can be accurately separated in the position spectrum. In the beam experiment, we also got the back-to-back correlation of fission fragments which is one of the direct signals characterizing binary decay.

Design of a Nature-inspired Wideband Sprout-leaf Antenna (자연모사 기반 광대역 새싹 안테나 설계)

  • Woo, Dongsik;Bae, Sunghyun
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.536-542
    • /
    • 2020
  • This paper presents a nature-inspired wideband sprout-leaf shaped antenna with end-fire radiation pattern. A sprout-leaf shape angled-radiator was designed for wide beamwidth radiation patterns for motion detection sensors. An extended and truncated ground plane was used as a reflector for end-fire radiation patterns. To feed the balanced radiator, a broadband microstrip (MS) to coplanar stripline (CPS) balun was utilized with excellent amplitude and phase balance. The proposed antenna demonstrates wide frequency bandwidth from 8.5 to 14.5 GHz with wide beamwidth and the radiation efficiency of 90%. The measured gain is from 4 to 5 dBi and front-to-back ratio was 10 to 20 dB. It has been shown that the proposed antenna can be used for imaging sensors, phased array systems, and radars that require a wide bandwidth and a directional radiation pattern.

Measurement of Micro-displacement of an Object by Laser Speckle using Linear Array CCD Detection System (레이저 스펙클과 1차원 CCD소자를 이용한 물체의 미소변위측정에 관한 연구)

  • 우창헌;민동현;김수용
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.138-143
    • /
    • 1994
  • A speckle correlation method was applied to measure the in-plane translation of a diffuse object which has rough surface using a linear CCD sensor and personal computer. Displacement of a speckle pattern produced from the object illuminated by a laser beam was measured by the cross-correlation functions between the I-D speckle profiles before and after the object translation, which were measured by linear CCD array sensor to be sent to IBM 386 personal computer. The sensitivity of the measurement was dependent on the radius of the wavefront curvature of incident beam as well as the spatial resolution of linear CCD array. A linear CCD array had 15 Jlffi pitch and 1728 pixels. The ratio of the speckle displacement and object translation varied from 1.03 to 5.20. The object translation of $3\mu\textrm{m}$ can be measured br the linear CCD sensor of which pitch was $15\mu\textrm{m}$, when the ratio of the speckle displacement and object translation was 5.20.s 5.20.

  • PDF

A Study of Galactic Molecular Clouds through Multiwavelength Observations

  • Park, Sung-Joon;Min, Kyoung-Wook;Seon, Kwang-Il;Han, Won-Yong;Lee, Dae-Hee;Edelstein, Jerry;Korpela, Eric;Sankrit, Ravi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.68.1-68.1
    • /
    • 2010
  • We focus on two Galactic molecular clouds that are located in wholly different environments and both are observed by FIMS instrument onboard STSAT-1. The Draco cloud is known as a translucent molecular cloud at high Galactic latitude. The FUV spectra show important ionic lines of C IV, Si IV+O IV], Si II* and Al II, indicating the existence of hot and warm interstellar gases in the region. The enhanced C IV emission inside the Draco cloud region is attributable to the turbulent mixing of the interacting cold and warm/hot media, which is supported by the detection of the O III] emission line and the $H{\alpha}$ feature in this region. The Si II* emission covers the remainder of the region outside the Draco cloud, in agreement with previous observations of Galactic halos. Additionally, the H2 fluorescent map is consistent with the morphology of the atomic neutral hydrogen and dust emission of the Draco cloud. In the Aquila Rift region near Galactic plane, FIMS observed that the FUV continuum emission from the core of the Aquila Rift suffers heavy dust extinction. The entire field is divided into three sub-regions that are known as the- "halo," "diffuse," and "star-forming" regions. The "diffuse" and "star-forming" regions show various prominent H2 fluorescent emission lines, while the "halo" region indicates the general ubiquitous characteristics of H2. The CLOUD model and the FUV line ratio are included here to investigate the physical conditions of each sub-region. Finally, the development of an infrared imaging system known as the MIRIS instrument onboard STSAT-3 is briefly introduced. It can be used in WIM studies through $Pa{\alpha}$ observations.

  • PDF

Measurement of Fine 6-DOF Displacement using a 3-facet Mirror (삼면반사체를 이용한 6자유도 미소 변위 측정)

  • 박원식;조형석;변용규;박노열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.50-50
    • /
    • 2000
  • In this paper, a new measuring system is :proposed which can measure the fine 6-DOF displacement of rigid bodies. Its measurement principle is based on detection of laser beam reflected from a specially fabricated mirror that looks like a triangular pyramid having an equilateral cross-sectional shape. The mirror has three lateral reflective surfaces inclined 45$^{\circ}$ to its bottom surface. We call this mirror 3-facet mirror. The 3-facet mirror is mounted on the object whose 6-DOF displacement is to be measured. The measurement is operated by a laser-based optical system composed of a 3-facet mirror, a laser source, three position-sensitive detectors(PSD). In the sensor system, three PSDs are located at three corner points of a triangular formation, which is an equilateral triangular formation tying parallel to the reference plane. The sensitive areas of three PSDs are oriented toward the center point of the triangular formation. The object whose 6-DOF displacement is to be measured is situated at the center with the 3-facet mirror on its top surface. A laser beam is emitted from the laser source located at the upright position and vertically incident on the top of the 3-fatcet mirror. Since each reflective facet faces toward each PSD, the laser beam is reflected at the 3-facet mirror and splits into three sub-beams, each of which is reflected from the three facets and finally arrives at three PSDs, respectively. Since each PSD is a 2-dimensional sensor, we can acquire the information on the 6-DOF displacement of the 3-facet mirror. From this principle, we can get 6-DOF displacement of any object simply by mounting the 3-facet mirror on the object. In this paper, we model the relationship between the 6-DOF displacement of the object and the outputs of three PSDs. And, a series of simulations are performed to demonstrate the effectiveness of the proposed method. The simulation results show that the proposed sensing system can be an effective means of obtaining 3-dimensional position and orientation of arbitrary objects.

  • PDF