• Title/Summary/Keyword: Plane Detection

Search Result 310, Processing Time 0.022 seconds

Superpixel-based Vehicle Detection using Plane Normal Vector in Dispar ity Space

  • Seo, Jeonghyun;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.6
    • /
    • pp.1003-1013
    • /
    • 2016
  • This paper proposes a framework of superpixel-based vehicle detection method using plane normal vector in disparity space. We utilize two common factors for detecting vehicles: Hypothesis Generation (HG) and Hypothesis Verification (HV). At the stage of HG, we set the regions of interest (ROI) by estimating the lane, and track them to reduce computational cost of the overall processes. The image is then divided into compact superpixels, each of which is viewed as a plane composed of the normal vector in disparity space. After that, the representative normal vector is computed at a superpixel-level, which alleviates the well-known problems of conventional color-based and depth-based approaches. Based on the assumption that the central-bottom of the input image is always on the navigable region, the road and obstacle candidates are simultaneously extracted by the plane normal vectors obtained from K-means algorithm. At the stage of HV, the separated obstacle candidates are verified by employing HOG and SVM as for a feature and classifying function, respectively. To achieve this, we trained SVM classifier by HOG features of KITTI training dataset. The experimental results demonstrate that the proposed vehicle detection system outperforms the conventional HOG-based methods qualitatively and quantitatively.

Redundant rule Detection for Software-Defined Networking

  • Su, Jian;Xu, Ruoyu;Yu, ShiMing;Wang, BaoWei;Wang, Jiuru
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2735-2751
    • /
    • 2020
  • The emergence of Software Defined Networking (SDN) overcomes the limitations of traditional networking architectures. There are some advantages in SDN which are centralized global network view, programmability, and separation of the data plane and control plane. Due to the limitation of data plane storage capacity in SDN, it is necessary to process the redundancy rules of switch. In this paper, we propose a method for active detection and processing of redundant rules. We use the result generated by the customized probe package to detect redundant rules. And by checking the forwarding behavior of probe packets in the data plane, the redundancy rules are further processed. Furthermore, in order to quickly check the dynamic networks, we propose an incremental algorithms for rapidly evolve the network strategies. We conduct simulation experiments on Matlab to verify the feasibility of the algorithm. The influence of some parameters on the result are discussed.

A Stereo Camera Based Method of Plane Detection for Path Finding of Walking Robot (보행로봇의 이동경로 인식을 위한 스테레오카메라 기반의 평면영역 추출방법)

  • Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.236-241
    • /
    • 2008
  • This paper presents a method to recognize the plane regions for movement of walking robots. When the autonomous agencies using stereo camera or laser scanning sensor is under unknown 3D environment, the mobile agency has to detect the plane regions to decide the moving direction and perform the given tasks. In this paper, we propose a very fast method for plane detection using normal vector of a triangle by 3 vertices defined on a small circular region. To reduce the effect of noises and outliers, the triangle rotates with respect to the center position of the circular region and generates a series of triangles with different normal vectors based on different three points on the boundary of the circular region. The vectors for several triangles are normalized and then median direction of the normal vectors is used to test the planarity of the circular region. The method is very fast and we prove the performance of algorithm for real range data obtained from a stereo camera system.

Quantification and location damage detection of plane and space truss using residual force method and teaching-learning based optimization algorithm

  • Shallan, Osman;Hamdy, Osman
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.195-203
    • /
    • 2022
  • This paper presents the quantification and location damage detection of plane and space truss structures in a two-phase method to reduce the computations efforts significantly. In the first phase, a proposed damage indicator based on the residual force vector concept is used to get the suspected damaged members. In the second phase, using damage quantification as a variable, a teaching-learning based optimization algorithm (TLBO) is used to obtain the damage quantification value of the suspected members obtained in the first phase. TLBO is a relatively modern algorithm that has proved distinguished in solving optimization problems. For more verification of TLBO effeciency, the classical particle swarm optimization (PSO) is used in the second phase to make a comparison between TLBO and PSO algorithms. As it is clear, the first phase reduces the search space in the second phase, leading to considerable reduction in computations efforts. The method is applied on three examples, including plane and space trusses. Results have proved the capability of the proposed method to precisely detect the quantification and location of damage easily with low computational efforts, and the efficiency of TLBO in comparison to the classical PSO.

Model-Based Plane Detection in Disparity Space Using Surface Partitioning (표면분할을 이용한 시차공간상에서의 모델 기반 평면검출)

  • Ha, Hong-joon;Lee, Chang-hun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.10
    • /
    • pp.465-472
    • /
    • 2015
  • We propose a novel plane detection in disparity space and evaluate its performance. Our method simplifies and makes scenes in disparity space easily dealt with by approximating various surfaces as planes. Moreover, the approximated planes can be represented in the same size as in the real world, and can be employed for obstacle detection and camera pose estimation. Using a stereo matching technique, our method first creates a disparity image which consists of binocular disparity values at xy-coordinates in the image. Slants of disparity values are estimated by exploiting a line simplification algorithm which allows our method to reflect global changes against x or y axis. According to pairs of x and y slants, we label the disparity image. 4-connected disparities with the same label are grouped, on which least squared model estimates plane parameters. N plane models with the largest group of disparity values which satisfy their plane parameters are chosen. We quantitatively and qualitatively evaluate our plane detection. The result shows 97.9%와 86.6% of quality in our experiment respectively on cones and cylinders. Proposed method excellently extracts planes from Middlebury and KITTI dataset which are typically used for evaluation of stereo matching algorithms.

Model-based Curved Lane Detection using Geometric Relation between Camera and Road Plane (카메라와 도로평면의 기하관계를 이용한 모델 기반 곡선 차선 검출)

  • Jang, Ho-Jin;Baek, Seung-Hae;Park, Soon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.130-136
    • /
    • 2015
  • In this paper, we propose a robust curved lane marking detection method. Several lane detection methods have been proposed, however most of them have considered only straight lanes. Compared to the number of straight lane detection researches, less number of curved-lane detection researches has been investigated. This paper proposes a new curved lane detection and tracking method which is robust to various illumination conditions. First, the proposed methods detect straight lanes using a robust road feature image. Using the geometric relation between a vehicle camera and the road plane, several circle models are generated, which are later projected as curved lane models on the camera images. On the top of the detected straight lanes, the curved lane models are superimposed to match with the road feature image. Then, each curve model is voted based on the distribution of road features. Finally, the curve model with highest votes is selected as the true curve model. The performance and efficiency of the proposed algorithm are shown in experimental results.

Development of Hough Transform for Space-Variant Image (공간 변형 영상에서의 Hough 변환)

  • 김장식;진성일
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.675-678
    • /
    • 2000
  • This paper presents a parametric line equation on the log-polar mapped plane to detect the straight lines in an original image. The log-polar edge image used in Hough transform is constructed by combining the edge images of both fovea and periphery. The foveal edge image detected by a Sobel mask on the Cartesian plane is transformed to the log-polar plane by forward mapping but the edge detection of the peripheral region is obtained by directly applying the newly developed mask to the log-polar plane. This paper also proposes a analytic method then determining a border between the fovea and the periphery regions.

  • PDF

Optimal In-Plane Configuration of 3-axis MEMS IMUs Considering Fault Detection and Isolation Performance and Lever Arm Effect (레버암 효과와 고장 감지 및 배제 성능을 고려한 여분의 3축 MEMS IMU의 평면 배치 기법)

  • Kim, Eung Ju;Kim, Yong Hun;Choi, Min Jun;Song, Jin Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1648-1656
    • /
    • 2018
  • The configuration of redundant inertial sensors are very important when considering navigation performance and fault detection and isolation (FDI) performance. By constructing a redundant sensor system using multiple inertial sensors, it is possible to improve the navigation performance and fault detection and isolation performance, which are highly related to the sensor configuration and allocation. In order to deploy multiple MEMS inertial measurement units effectively, a configuration and allocation methods considering navigation performance, fault detection and isolation performance, and lever arm effect in one plane are presented, and the performance is analyzed through simulation in this research. From the results, it is confirmed that the proposed configuration and allocation method can improve navigation, FDI, and lever arm effect rejection performances more effectively by more than 70%.

Real-Time Road Sign Detection Using Vertical Plane and Adaboost (수직면과 아다부스트를 사용한 실시간 교통 표지판 검출)

  • Yoon, Chang-Yong;Jang, Suk-Yoon;Park, Mig-Non
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.5
    • /
    • pp.29-37
    • /
    • 2009
  • This paper describes a vision-based and real-time system for detecting road signs from within a moving vehicle. The proposed system has the standard architecture with adaboost algorithm to detect road signs in real time. And it uses the value of vortical plane in the process of extracting candidate areas in view of fact that there are vertically most of signs on roads. Although being useful for detecting objects in real time, the conventional adaboost algorithm deteriorates the performance of detection rate in complex circumstance by reason of using only integral images as features. To overcome this problem, this paper proposes the method that improves the reliability of candidates as using the value of vertical plane for extracting candidate area and improves the performance of the detection rate as using integral images to which we add the kind of feature prototype. The experiments of this paper show that the detection rate of the proposed method has higher than that of the conventional adaboost algorithm under the real complex circumstance of roads.

A Real-time Plane Estimation in Virtual Reality Using a RGB-D Camera in Indoors (RGB-D 카메라를 이용한 실시간 가상 현실 평면 추정)

  • Yi, Chuho;Cho, Jungwon
    • Journal of Digital Convergence
    • /
    • v.14 no.11
    • /
    • pp.319-324
    • /
    • 2016
  • In the case of robot and Argument Reality applications using a camera in environments, a technology to estimate planes is a very important technology. A RGB-D camera can get a three-dimensional measurement data even in a flat which has no information of the texture of the plane;, however, there is an enormous amount of computation in order to process the point-cloud data of the image. Furthermore, it could not know the number of planes that are currently observed as an advance, also, there is an additional operation required to estimate a three dimensional plane. In this paper, we proposed the real-time method that decides the number of planes automatically and estimates the three dimensional plane by using the continuous data of an RGB-D camera. As experimental results, the proposed method showed an improvement of approximately 22 times faster speed compared to processing the entire data.